期刊文献+

基于情感计算的微博突发事件检测方法研究 被引量:9

Bursty Event Detection in Microblogging based on Sentiment Computing
下载PDF
导出
摘要 微博已经成为社会新闻舆论最重要的集散地和社会群体平台,对微博信息流进行监测发现,突发事件对于舆情监控具有十分重要的意义。文章通过构建情感向量,采用改进的Kleinberg方法对情感状态进行监测,发现突发事件情感特征及突发期,并采用谱聚类方法对处于突发期的博文进行聚类分析,抽取突发事件。实验结果证明该方法可以快速发现微博流中的突发事件,是一种有效的在线事件检测方法。 Microblogging has become a new social media for public opinion sharing and plays an increasing important role in burst event detection. In this paper, constructed sentiment vectors and built hierarchical structures. Then we monitored the states of sentiment words to discover burst events and burst periods using improved method of Kleinberg. The content of events is formed using spectral clustering approach according the messages in burst periods. Experimental evaluations show that online event detection could implement effectively using the approach proposed in this article.
出处 《信息网络安全》 2012年第8期143-145,共3页 Netinfo Security
基金 国家自然科学基金[60933005 91124002] 国家863计划项目[012505 2011AA010702 2012AA01A401 2012AA01A402] 国家242项目[2011A010] 科技支撑计划课题[2012BAH38B04 2012BAH38B06]
关键词 事件监测 情感计算 微博 突发 event detection sentiment computing micorblogging burst feature
  • 相关文献

参考文献10

  • 1J.Kleinberg. Bursty and Hierarchical structure in streams[C]. In the Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2002:91-101.
  • 2G.P.C.Fung, J.X.Yu, and P.S.Yu. Parameter Free Bursty Events Detection in Text Streams[C].In the Proceedings of the 31st VLDB Conference, Trondheim, Norway,2005.
  • 3Q. He, K.Chang and E.P.Lim. Analyzing feature trajectories for event detection[C]. In the proceedings of the 30th annual international ACM SIGIP, conference of research and development in information retrieval. New York, USA,2007. 207-214.
  • 4Q.He, K.chang and E.P.Lim. Using burstiness to improve clustering of topics in news stearns[C]. In the proceeding of the seventh IEEE international Conference on Data Mining,2008. 493-498.
  • 5T. Sakaki, M.Okazaki, and Y.Matsuo, Earthquake shakes twitter users: real-time event detection by social sensors[C]. In the Proceedings of the 19th international conference on World wide web. New York, USA,2010. 851-860.
  • 6Xinhua Zhu, Xuegang Shah, Jiangchun Hu. China Internet Public Opinion Analysis Report[EB/OL]. http://yuqing.people.com.cn/ GB/16698341.html, 2012-07-12.
  • 7Bo Pang, Lillian Lee. 2008. Opinion mining and sentiment analysis[J]. Found. Trends Inf. Retr. 2(1-2):1-135.
  • 8B.Liu, M .Hu, J.Cheng. OpinionObserver:Analyzing and Comparing Opinions on the Web[C]. In:Proceedings of WWW'05, the 14th international conference on World Wide Web. Chiba, Japan, 2005. 342-351.
  • 9J.Weng and B.Lee. Event Detection in Twitter[C]. In the proceedings of the fifth international AAAI Conference on Weblogs and Social Media.
  • 10J. Yao, B.Cui, Y.Huang, x.Jin. Temporal and Social Context based Burst Detection from Folksonomies[C]. In the proceedings of the 24th AAAI Conference on Aritfical Intelligence. 2010.

同被引文献99

引证文献9

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部