期刊文献+

Net analyte signal with floating reference theory in non-invasive blood glucose sensing by near-infrared spectroscopy 被引量:4

Net analyte signal with floating reference theory in non-invasive blood glucose sensing by near-infrared spectroscopy
原文传递
导出
摘要 Based on the floating reference theory, a new method for extracting the net analyte signal (NAS) is proposed. The noise background subspace is spanned by spectra at the floating radial reference point, and then, the spectra at the measurement point are projected on the subspace. Thereafter, the glucose concentrations in intralipid solutions are investigated through Monte Carlo simulation and experiments, and the partial least squares (PLS) models with and without NAS analysis are built. The root mean square errors of calibration and prediction reach to 28.87% and 27.33%, respectively. The results confirm the existence of information induced by glucose concentration variations as well as the validity of the floating reference theory. Based on the floating reference theory, a new method for extracting the net analyte signal (NAS) is proposed. The noise background subspace is spanned by spectra at the floating radial reference point, and then, the spectra at the measurement point are projected on the subspace. Thereafter, the glucose concentrations in intralipid solutions are investigated through Monte Carlo simulation and experiments, and the partial least squares (PLS) models with and without NAS analysis are built. The root mean square errors of calibration and prediction reach to 28.87% and 27.33%, respectively. The results confirm the existence of information induced by glucose concentration variations as well as the validity of the floating reference theory.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2012年第8期70-73,共4页 中国光学快报(英文版)
基金 supported by the State Key Program of the National Natural Science Foundation of China (No.60938002) the National Natural Science Foundation of China (No. 30900275)
关键词 Mean square error Monte Carlo methods Mean square error Monte Carlo methods
  • 相关文献

参考文献23

  • 1C. Bai, T. L. Graham, and M. A. Arnold, Anal. Lett. 41, 2773 (2008).
  • 2H. Chung, M. A. Arnold, M. Rhiel, and D. W. Murham- mer, Appl. Spectrosc. 50, 270 (1996).
  • 3K. Maruo, Spectrosc. K. Maruo, moto, M. M. Tsurugi, M. Tamura, and Y. Ozaki, Appl 57, 1236 (2003).
  • 4T. Oota, M. Tsurugi, T. Nakagawa, H. Ari- Tamura, Y. Ozaki, and Y. Yamada, Appl Spectrosc. 60, 441 (2006).
  • 5J. Qu and B. C. Wilson, J. Biomed. Opt. 2, 319 (1997).
  • 6J. T. Olesberg, L. Liu, V. V. Zee, and M. A. Arnold Anal. Chem. 78, 215 (2006).
  • 7M. A. Arnold, J. J. Burmeister, and G. W. Small, Anal. Chem. 70, 1773 (1998).
  • 8M. A. Arnold, L. Liu, and J. T. Olesberg, J. Diabetes Sci. Technol. 1, 454 (2007).
  • 9N. C. Dingari, I. Barman, G. P. Singh, J. W. Kang, R. R. Dasari, and M. S. Feld, Anal. Bioanal. Chem. 400, 2871 (2011).
  • 10J. Lipson, J. Bernhardt, U. Block, W. R. Freeman, R. Hofmeister, M. Hristakeva, T. Lenosky, R. McNamara, D. Petrasek, D. Veltkamp, and S. Waydo, J. Diabetes Sci. Technol. 3, 233 (2009).

同被引文献36

引证文献4

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部