期刊文献+

一个超混沌Lorenz系统的全局指数吸引集及应用 被引量:1

Globally Exponentially Attractive Set of a Hyperchaotic Lorenz Chaotic System and Its Application
下载PDF
导出
摘要 利用广义Lapunov理论和优化理论研究了一个超混沌Lorenz系统的全局指数吸引集和正向不变集,并且利用得到的结果研究了该系统的全局指数同步性,通过数值仿真验证了理论的可行性。 This paper investigates the globally exponentially attractive and positively invariant set for a hyperchaotic Lorenz chaotic system with the help of the generalized Lyapunov function and optimationtheory. And the result is applied to study the globally exponentially synchronization. Numerical simulations are presented to show the effectiveness of the proposed chaos synchronization scheme.
作者 胥红星
出处 《重庆理工大学学报(自然科学)》 CAS 2012年第7期110-114,122,共6页 Journal of Chongqing University of Technology:Natural Science
基金 国家自然科学基金青年项目(70901013) 郑州航空工业管理学院青年基金资助项目(2010013004)
关键词 全局指数吸引集 混沌 同步 the globally exponentially attractive set chaos synchronization
  • 相关文献

参考文献2

二级参考文献11

  • 1廖晓昕.论Lorenz混沌系统全局吸引集和正向不变集的新结果及对混沌控制与同步的应用[J].中国科学(E辑),2004,34(12):1404-1419. 被引量:19
  • 2Lorenz Z N. Deterministic non-periodic flow. J Atoms Sci, 1963, 20:130--141.
  • 3Lorenz E N. The Essence of Chaos. Washington: USA University of Washington Press, 1993.
  • 4Sparrow C. The Lorenz Equations: Bifurcation, Chaos and Strange Attractors. Berlin-Heidelberg, New York: Springer-Verlag, 1976.
  • 5Stwart I. The Lorenz attractor exists. Nature, 2002, 406:948--949.
  • 6Warwick T. A rigorous ODE solver and smale's 14th problem. Found Comput, Math, 2002, 2:53--117.
  • 7Leonov G A, Bunin A L, Kokxh N. Atractor localization of the Lorenz system. ZAMM, 1987, 67:649--656.
  • 8Leonov G A. Bound for attractors and the existence of Homoclinic orbits in the Lorenz system. J Appl Math Mechs, 2001, 65(1): 19--32.
  • 9Li D M, Lu J A, Wa X Q, et al. Estimating the bounded for the Lorenz family of chaotic systems. Chaos, Solutions Fractals, 2005, 23:529--534.
  • 10Yu P, Liao X X. New estimates for globally attracvtive and positive invariant set ofyhe family of the Lorenz system. Int J Bifurcation & Chaos, 2006, 16(11): 3383--3390.

共引文献42

同被引文献23

  • 1WATTS D J, STROGATZ S H. Collective dynamics of ‘small-world’networks [J]. Nature, 1998, 393(6684): 440 – 442.
  • 2BARABASI A L, ALBERT R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509 – 512.
  • 3PECORA L M, CARROLL T L. Master stability functions forsynchronized coupled systems [J]. Physical Review Letters, 1998,80(10): 2109 – 2112.
  • 4HUANG L, CHEN Q, LAI Y C, et al. Generic behavior of masterstabilityfunctions in coupled nonlinear dynamical systems [J]. PhysicalReview E, 2009, 80(3): 1863 – 1870.
  • 5WANG X F, CHEN G R. Synchronization in small-world dynamicalnetworks [J]. International Journal of Bifurcation and Chaos, 2009,12(1): 187 – 192.
  • 6WANG X F, CHEN G R. Synchronization in scale-free dynamicalnetworks: robustness and fragility [J]. IEEE Circuits and Systems I:Fundamental Theory and Applications, 2002, 49(1): 54 – 62.
  • 7NISHIKAWA T, MOTTER A E, LAI Y C, et al. Heterogeneity inoscillator networks: are smaller worlds easier to synchronize- [J].Physical Review Letters, 2003, 91(1): 014101.
  • 8MOTTER A E, ZHOU C S, KURTHS J. Enhancing complex-networksynchronization [J]. Europhysics Letters, 2005, 69(3): 334 – 340.
  • 9LI C, SUN W, KURTHS J. Synchronization between two coupledcomplex networks [J]. Physical Review E, 2007, 76(4): 70 – 80.
  • 10TANG H, CHEN L, LU J A, et al. Adaptive synchronization betweentwo complex networks with nonidentical topological structures [J].Physica A, 2008, 387(22): 5623 – 5630.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部