期刊文献+

Zero-based subspaces and quasi-invariant subspaces of the Bargmann-Fock space 被引量:1

Zero-based subspaces and quasi-invariant subspaces of the Bargmann-Fock space
原文传递
导出
摘要 We use the Weierstrass a-function associated with a lattice in the complex plane to construct finite dimensional zero-based subspaces and quasi-invariant subspaces of given index in the Bargmann-Fock space. We use the Weierstrass σ-function associated with a lattice in the complex plane to construct finite dimensional zero-based subspaces and quasi-invariant subspaces of given index in the Bargmann-Fock space.
出处 《Science China Mathematics》 SCIE 2012年第9期1779-1796,共18页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (Grant Nos. 10871140 and 11171245) the third author is partially supported by Simons Foundation
关键词 Bargmann-Fock space index of quasi-invariant subspace zero-based subspaces 不变子空间 Fock空间 s-函数 有限维 复平面 晶格
  • 相关文献

参考文献26

  • 1Abakumov E, Borichev A. Shift invariant subspaces with arbitrary indices in 1p spaces. J Funct Anal, 2002, 188:1-26.
  • 2Albrecht E, Vasilescu F. Invariant subspaces for some families of unbounded subnormal operators. Glasg Math J, 2003, 45:53-67.
  • 3Ahlfors L. Complex Analysis, An Introduction to the Theory of Analytic Functions of One Complex Variable, 3rd ed. International Series in Pure and Applied Mathematics. New York: McGraw-Hill Book Co., 1978.
  • 4Aleman A, Richter S, Sundberg C. Beurling's theorem for the Bergman space. Acta Math, 1996,77:275-310.
  • 5Apostol C, Bercovici H, Foias C, et aI. Invariant subspaces, dilation theory, and the structure of the predual of dual algebra I. J Funet Anal, 1985, 63:369-404.
  • 6Bercovici B, Foias C, Pearcy C. Dual algebra with applications to invariant subspace and dilation theory. CBMS, vol. 56. Providence, RI: Amer Math Soc, 1985.
  • 7Borichev A. The polynomial approximation property in Fock-type space. Math Scand, 1998, 82:256-264.
  • 8Borechev A. Invariant subspaces of given index in Banach spaces of analytic functions. J Reine Angew Math, 1998, 505:23-44.
  • 9Borechev A, Hedenmalm H, Volberg A. Large Bergman spaces: invertibility, cyclicity, and subspaces of arbitrary index. J Funct Anal, 2004, 207:111-160.
  • 10Chen X, Guo K. Analytic Hilbert Modules. Research Notes in Mathematics, No. 433. Boca Raton, FL: Chapman Hall/CRC, 2003.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部