摘要
Insa and Pauer presented a basic theory of Grbner bases for differential operators with coefficients in a commutative ring and an improved version of this result was given by Ma et al.In this paper,we present an algorithmic approach for computing Grbner bases in difference-differential modules with coefficients in a commutative ring.We combine the generalized term order method of Zhou and Winkler with SPoly method of Insa and Pauer to deal with the problem.Our result is a generalization of theories of Insa and Pauer,Ma et al.,Zhou and Winkler and includes them as special cases.
Insa and Pauer presented a basic theory of Grbner bases for differential operators with coefficients in a commutative ring and an improved version of this result was given by Ma et al.In this paper,we present an algorithmic approach for computing Grbner bases in difference-differential modules with coefficients in a commutative ring.We combine the generalized term order method of Zhou and Winkler with SPoly method of Insa and Pauer to deal with the problem.Our result is a generalization of theories of Insa and Pauer,Ma et al.,Zhou and Winkler and includes them as special cases.
基金
supported by National Natural Science Foundation of China (Grant No.10871017)
Natural Science Foundation of Beijing (Grant No. 1102026)