期刊文献+

改进蚁群聚类算法在火山岩岩性识别中的应用 被引量:4

Application of Improved Ant Colony Clustering Algorithm to Volcanic Rock Lithology Identification
下载PDF
导出
摘要 提出了一种基于蚁群算法和模糊聚类算法的改进蚁群聚类算法对火山岩岩性进行识别。介绍了蚁群算法的原理、K-均值聚类算法的实现过程及改进蚁群聚类算法的实现过程。用该方法对火山岩样本数据点进行训练和学习,获得最佳的岩性聚类中心,根据加权信息素浓度和的大小,识别实际测井数据点的岩性。对松辽盆地430个火山岩薄片的实际处理表明,与自组织神经网络及K-均值聚类算法相比,该方法识别准确率高、运算速度快,是一种有效的岩性识别手段。 Put forward is an improved ant colony clustering algorithm based on ant colony algorithm and fuzzy clustering algorithm to identify the volcanic rock lithology accurately. Introduced are the principle of ant colony algorithm, realization process of K-means clustering algorithm and improved ant colony clustering algorithm. After training and learning of the volcanic rock sample-data points, the best cluster centers are obtained. Then the lithology of actual logging data points can be identified by comparing the sum of weighted pheromone concentration values. Practical applications of 430 volcanic chips in Songliao basin show that, compared with SOM as well as K-means clustering algorithm, the improved ant colony clustering algorithm is more accurate, faster calculation and practical in lithology identification.
出处 《测井技术》 CAS CSCD 北大核心 2012年第4期378-381,共4页 Well Logging Technology
关键词 测井解释 蚁群算法 模糊聚类 火山岩 岩性识别 松辽盆地 log interpretation, ant colony algorithm, fuzzy clustering, volcanic rock, lithologyidentification, Songliao basin
  • 相关文献

参考文献10

二级参考文献77

共引文献281

同被引文献36

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部