期刊文献+

基于多层特征基参数融合的网络入侵检测算法 被引量:2

Network Intrusion Detection Algorithm Based on Multi-level and Parameters of the Fusion Feature
下载PDF
导出
摘要 传统的网络入侵检测算法,使用的都是同一个或者相似的特征基作为入侵检测的衡量标准,但是在多层网络中,不同层次的特征基参数存在差异,检测结果误差较大。为此提出了一种基于多层特征基参数融合的网络入侵检测算法。通过提取多层网络操作差异特征基参数,利用非线性回归方式对每层特征基参数进行差异补偿,按照自适应融合方式对多层差异特征基进行融合处理,以此作为检测的基础。实验表明,该算法提高了检测的准确率,取得了理想的效果。 The traditional network intrusion detection algorithm,the use of all are the same or similar characteristics as the intrusion detection criterion,but in a multi-layered network,the different levels of the characteristics and differences between the parameters,the test result error is bigger.Therefore put forward based on the parameters of features of the integration of network intrusion detection algorithm.Through the extraction multilayer network operating difference characteristics and parameters by using nonlinear regression way for each layer,characteristic parameters of difference compensation,according to the adaptive way fusion of multilayer difference characteristics the fusion processing,as the basis of a test.Experiments show that the algorithm enhances the accuracy of inspection,to make the ideal effect.
作者 李庆年
机构地区 邕江大学
出处 《科技通报》 北大核心 2012年第8期69-71,共3页 Bulletin of Science and Technology
关键词 入侵检测 多层网络 特征参数 network intrusion detection network attack characteristic parameters
  • 相关文献

参考文献4

二级参考文献19

  • 1郭亚周,高德远,高翔.模糊聚类分析在入侵检测系统中的应用研究[J].沈阳理工大学学报,2005,24(4):26-28. 被引量:26
  • 2卿斯汉,蒋建春,马恒太,文伟平,刘雪飞.入侵检测技术研究综述[J].通信学报,2004,25(7):19-29. 被引量:234
  • 3赵俊忠,游林,徐茂智,孙善利,黄厚宽.入侵检测系统中检测技术的研究[J].计算机工程与应用,2005,41(2):11-13. 被引量:16
  • 4Wang Yujia, Yang Yupu. Particle Swarm Optimization with Preference Order Ranking for Multi-objective Optimization[J]. Information Sciences, 2009, 179(12): 1944-1959.
  • 5Kiranyaz S, Ince T, Yildirim A, et al. Evolutionary Artificial Neural Networks by Multi-dimensional Particle Swarm Optimization[J]. Neural Networks, 2009, 22(10): 1448-1462.
  • 6Marinakis Y, Marinaki M. A Hybrid Multi-swarm Particle Swarm Optimization Algorithm for the Probabilistic Traveling Salesman Problem[J]. Computers & Operations Research, 2010, 37(3): 432-442.
  • 7[3]Lippmann R;Cunningham R. Improving intrusion detection performance using keyword selection and neural network[C]. Proceedings. RAID'99,1999
  • 8[4]Lee, S.C.; Heinbuch, D.V. Training a neural-network based intrusion detector to recognize novel attacks[J]. IEEE Transactions on Systems, Man and Cybernetics, Part A, Volume: 31 Issue: 4 , July 2001, pp 294 -299
  • 9[5]J Balasubramaniyan, J Omar Garcia-Fernandez, D Isacoff, E Spafford, D Zamboni. An architecture for intrusion detection using autonomous agents[C].Proceedings of the 14th Computer Security Applications Conference, 1998. pp 13-24
  • 10[6]Frincke D, Don Tobin, Jesse McConnell et al. A framework for cooperative intrusion detection[C]. Proceedings of the 21st National Information Systems Security Conference, 1998, pp 361-373

共引文献45

同被引文献9

引证文献2

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部