期刊文献+

实时浮游生物图像目标智能识别系统设计

Design for Real-time Intelligent Recognition System of Plankton Image Target
下载PDF
导出
摘要 根据浮游生物目标的现场分类统计需求,提出一种改进的实时目标识别系统设计方案。使用CCD传感器进行实时图像采集,在逐帧图像处理中引入目标帧筛选以减少运算。采用背景减算法替代传统的迭代算法实现快速目标分割,利用自适应特征选取的快速线形分类器进行目标分类,并通过多核负载均衡实现并行处理。实验结果表明,该系统的平均单帧识别时间低于29.1 ms,识别率高达91%,达到实时识别要求。 In order to meet the demands of real time statistics for classification,this paper proposes a design for real time intelligent recognition system of plankton target with high recognition rate.This paper acquires real time image with CCD sensor,develops target frame selection in the processing of frames.A fast segmentation based on background subtraction instead of traditional iteration is proposed.Fast linear classifier with adaptive feature extraction is achieved for target classification.At the same time,this paper achieves parallel processing with load balancing.Experimental results show that the system reaches real time recognition while average single frame recognition time is less than 29.1 ms and recognition rate is as high as 91%.
出处 《计算机工程》 CAS CSCD 2012年第15期183-186,共4页 Computer Engineering
基金 国家自然科学基金资助项目(40927001)
关键词 浮游生物图像 实时智能识别 背景减算法 目标分割 并行处理 plankton image real time intelligent recognition background subtraction algorithm target segmentation parallel processing
  • 相关文献

参考文献7

  • 1曹超,雷怀彦,官宝聪,柳浩然,吴丽芳.东沙海域沉积物有机碳、氮含量及其同位素分布特征对富甲烷环境指示意义[J].厦门大学学报(自然科学版),2010,49(6):838-844. 被引量:4
  • 2Capone D J, Zehr J P, Paerl H W, et al. Trichodesmium, a Globally Significant Marine Cyanobacterium[J]. Science, 1997, 276(5316): 1221-1229.
  • 3戴民汉,翟惟东.海洋环境现场监测手段的开发与应用[J].厦门大学学报(自然科学版),2001,40(3):706-714. 被引量:12
  • 4Mc S J, Jabri S, Duric Z, et al. Tracking Groups of People[J]. Computer Vision and Image Understanding, 2000, 80(1): 42-56.
  • 5Jaynes C. Multi-view Calibration from Planar Motion for Video Surveillance[C]//Proc. of the 2nd IEEE International Workshop on Visual Surveillance. Colorado, USA: [s. n.], 1999: 59-67.
  • 6Tsuchiya M, Fujiyoshi H. Evaluating Feature Importance for Object Classification in Visual Surveillance[C]//Proc. of the 18th IEEE International Conference on Pattern Recognition. Hong Kong, China: [s. n.], 2006: 978-981.
  • 7Freund Y, Schapire R E. A Decision-theoretic Generalization of Online Learning and an Application to Boosting[J]. Journal of Computer and System Sciences, 1997, 55(1): 119-139.

二级参考文献32

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部