期刊文献+

基于纹理图像分析的生物视觉模型不变性评价

Invariance Evaluation for Biological Visual Model Based on Analysis of Textured Images
下载PDF
导出
摘要 基于纹理图像,从计算机视觉角度对生物视觉模型——视皮层目标识别的标准模型进行定量分析与评价。对原始图像分别进行尺度、旋转及仿射等变化,利用标准模型提取变化后图像的生物视觉特征,再根据提取的生物视觉特征对纹理图像进行分类,采用图像分类结果的曲线下面积来定量分析和评价生物视觉模型是否具有不变性。大量与局部二元模式特征的对比实验表明,该模型提取的生物视觉特征对于纹理图像具备优良的尺度、旋转与仿射不变性。 From the view of computer vision, the particular quantitative analyses and evaluations about rotational, scale and affine invariance of standard model of object recognition in cortex are made based on textured images. The original textured images are scaled, rotated and affinely transformed respectively. Biological visual features of these transformed images, also called Standard Model Features(SMFs), are extracted by the standard model. The SMFs are used to classify the images. After classification, the area under curve is utilized to quantitatively analyze and evaluate whether the standard model has invariance or not. Compared with the Local Binary Pattem(LBP) feature, a great deal of experiments show that the biological visual features extracted by the standard model have sunerior scale, rotational and affine invariance to textured images.
出处 《计算机工程》 CAS CSCD 2012年第16期23-26,共4页 Computer Engineering
基金 国家自然科学基金资助项目(41071256) 国家"973"计划基金资助项目(2012CB719903) 国家教育部高等学校博士学科点专项科研基金资助项目(20090073110018)
关键词 生物视觉特征 局部二元模式特征 尺度不变性 旋转不变性 仿射不变性 纹理图像 biological visual feature Local Binary Pattern(LBP) feature scale invariance rotational invariance affine invariance textured image
  • 相关文献

参考文献8

  • 1Fukushima K. Neocognitron: A Self-organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position[J]. Biological Cybernetics, 1980, 36(4): 193-202.
  • 2Hubel D H, Wiesel T N. Receptive Fields of Single Neurones in the Cat's Striate Cortex[J]. Journal of Physiology, 1959, 148(3): 574-591.
  • 3Riesenhuber M, Poggio T. Hierarchical Models of Object Recog- nition in Cortex[J]. Nature Neuroscience, 1999, 2(11): 1019-1025.
  • 4Serre T, Wolf L, Bileschi S, et al. Robust Object Recognition with Cortex-like Mechanisms[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(3): 411-426.
  • 5Tamura H, Mori S, Yamawaki T. Texture Features Corresponding to Visual Perception[J]. IEEE Transactions on Systems, Man and Cybernetics, 1978, 8(6): 460-473.
  • 6Leibo J Z, Mutch J, Rosasco L, et al. Learning Generic lnvariances in Object Recognition: Translation and Scale[R]. Cambridge, USA Massachusetts Institute of Technology, Tech. Rep.: CBCL 294, 2010.
  • 7Ojala T, Pietik~iinen M, Harwood D. A Comparative Study of Texture Measures with Classification Based on Feature Distribu- tion[J]. Pattern Recognition, 1996, 29(1 ): 51-59.
  • 8Ojala T, Pietikainen M. Unsupervised Texture Segmentation Using Feature Distributions[J]. Pattern Recognition, 1999, 32(3): 477- 486.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部