期刊文献+

基于Grassmann流形的多聚类特征选择 被引量:3

Multi-cluster Feature Selection Based on Grassmann Manifold
下载PDF
导出
摘要 在无监督聚类特征选择过程中,局部欧氏度量可能置乱局部流形的拓扑结构,影响所选特征的聚类性能。为此,提出一种基于Grassmann流形的多聚类特征选择算法。利用局部主成分分析逼近数据点的切空间,获取局部数据的主要变化方向。根据切空间构造Grassmann流形,通过测地距保留局部数据的流形拓扑结构,以L1范数优化逼近流形拓扑,选择利于聚类的原本数据特征。实验结果验证了该算法的有效性。 In unsupervised feature selection for clustering, the local topology of spectral clustering is usually built by Euclidean distance, which can even scramble the local topology in the small local. The scrambling topology can degrade the performance of the clustering. In this paper, Grassmann Multi-cluster Feature Selection(MCFS) algorithm is proposed to solve the problem. The tangent space of the data is approximated by local principal component analysis, which represents the main variation direction of the local data and filters the influence of the scrambling points generated by Euclidean distance. Via constructing Grassmann manifold in the tangent space, the geodesic distance of Grassmann manifold can preserve the topology structure of the local data. The topology of the manifold is approximated by L1 norm optimization, and the feature subset of original features is selected. Experimental result proves the validity of this algorithm.
出处 《计算机工程》 CAS CSCD 2012年第16期178-181,共4页 Computer Engineering
基金 国家自然科学基金资助项目(61073092) 国家国际科技合作专项基金资助项目(2011DFR10480) 陕西省教育厅自然科学专项基金资助项目(2010JK718)
关键词 无监督聚类 特征选择 GRASSMANN流形 切空间 子空间 正则化 unsupervised clustering feature selection Grassmann manifold tangent space subspace regularization
  • 相关文献

参考文献14

  • 1Boutemedjet S, Bouguila N, Ziou D. A Hybrid Feature Extraction Selection Approach for High-dimensional Non-gaussian Data Clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(8): 1429-1443.
  • 2Cai Deng, Zhang Chiyuan, He Xiaofei. Unsupervised Feature Selection for Multi-cluster Data[C]//Proceedings of the 16th ACM SIGKDD'I 0. Washington D. C., USA: ACM Press, 2010.
  • 3Sotoca J M, Pla F. Supervised Feature Selection by Clustering Using Conditional Mutual Information-based Distances[J]. Pattern Recognition, 2010, 43(6): 2068-2081.
  • 4Kabir M, Islam M, Murase K. A New Wrapper Feature Selection Approach Using Neural Network[J]. Neurocomputing, 2010,73(16-18): 3273-3283.
  • 5Sun Dan, Zhang Daoqiang. Bagging Constraint Score for Feature Selection with Pairwise constraints[J]. Pattern Recognition, 2010, 43(6): 2106-2118.
  • 6Zhao Zheng, Liu Huan. Spectral Feature Selection for Supervised and Unsupervised Learning[C]//Proceedings of the 24th Annual International Conference on Machine Learning. Corvallis, USA: [s. n.], 2007.
  • 7Chiang L H, Pell R J. Genetic Algorithms Combined with Dis- criminant Analysis for Key Variable Identification[J]. Journal of Process Control, 2004, 14(2): 143-155.
  • 8Hsu W H. Genetic Wrappers for Feature Selection in Decision Tree Induction and Variable Ordering in Bayesian Network Structure Learning[J]. Information Sciences, 2004, 163(1-3): 103-122.
  • 9He Xiaofei, Cai Deng, Niyogi P. Laplacian Score for Feature Selection[J]. Advances in Neural Information Processing Systems, 2005, 18: 507-514.
  • 10Lui Y M, Ross B J, Kirby M. Action Classification on Product Manifolds[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE Press, 2010.

同被引文献28

  • 1刘红梅,王少萍,欧阳平超.基于小波包和Elman神经网络的液压泵故障诊断[J].北京航空航天大学学报,2007,33(1):67-71. 被引量:23
  • 2HAMM J. Subspace-based learning with Grassmann man- ifolds [ D ]. Philadelphia :University of Pennsylvania, 2008.
  • 3KIM T K. Discriminant Analysis of Patterns in Images, Image Ensembles, and Videos [ D]. British .University of Cambridge, 2007.
  • 4LU Jiwen,YANG Gao,TAN Y P. Robust gait recognition via discriminative set matching [ J ]. Journal of Visual Communication and Image Representation,2013, 24(4) : 439-447.
  • 5TURAGA Pavan,VEERARAGHAVAN Ashok, SRIVAS- TAVA Anuj,et al. Statistical Computations on Grassmann and Stiefel manifolds for Image and Video-Based Recogni- tion[ J]. IEEE Trans Pattern Analysis and Machine Intel- ligence, 2011,33( 11 ) :2273-2286.
  • 6SI Si, TAO Dacheng, GENG Bo. Bregman Divergence- Based Regularization for Transfer Subspace Learning[ J ]. IEEE Transactions on Knowledge and Data Engineering, 2010,22 ( 7 ) : 929-942.
  • 7ZENG Xianhua,ZHONG Jingjing. Semi-supervised Dis- cirminative Mutual Subspace Method [ EB/OL ]. ( 2011- 10-08) [ 2013-02-11 ]. http://www, researehgate, net/ publicatiort/224257971 _Semi-Supervised_Discriminative_ Mutual_Subspace_Method.
  • 8WANG Ruiping, SHAN Shiguang, et al. Manifold-Maui- fold Distance with Application to Face Recognition basedon Image Set[ C]//Computer Vision and Pattern Recog- nition. USA : Anchorage, AK, IEEE Conference, 2008 : 2940 -2947.
  • 9YAMAGUCHI O, FUKUI K. Face recognition using tem- poral image sequence[ C]//Automatic Face and Gesture Recognition. Florida USA:Third IEEE International Con- ference on IEEE, 1998 : 318-323.
  • 10FUKUI K, YAMAGUCHI O. Face recognition using multi- viewpoint patterns for robot vision[ M ]// Springer Berlin Heidelberg:Robotics Research, 2005 : 192-201.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部