期刊文献+

基于自适应优化混合建议分布的粒子滤波算法 被引量:2

Particle Filtering Algorithm Based on Hybrid Proposal Distribution of Adaptive Optimization
下载PDF
导出
摘要 将状态转移先验分布和观测似然分布相结合,提出一种基于自适应退火参数优化混合建议分布的粒子滤波算法。根据当前最新的观测信息,以退火参数因子调控混合建议分布中状态转移先验分布与似然建议分布的混合率。在混合建议分布中结合自适应参数优化机制动态调整退火参数。仿真实验验证了该算法的有效性。 This paper proposes a particle filtering algorithm based on hybrid proposal distribution of adaptive optimization.Based on performance analysis of particle filter with different proposal distribution,hybrid proposal distribution is used to consider the current latest observational information.Annealing parameter factor is utilized to adjust the mix ratio of state transition prior distribution and likelihood proposal distribution in hybrid proposal distribution.By the analysis of hybrid proposal distribution with fixed annealing parameter optimization,adaptive parameter optimization mechanism is combined in above hybrid proposal distribution to dynamically adjust the annealing parameter.With the simulation program of object tracking,the performance of proposed particle filtering algorithm is evaluated and its validity is verified.
出处 《计算机工程》 CAS CSCD 2012年第16期200-202,共3页 Computer Engineering
基金 河南省重点科技攻关计划基金资助项目(122102310309) 河南省高等学校青年骨干教师基金资助项目(2010GGJS-059) 河南理工大学博士基金资助项目(B2011-58) 河南理工大学青年骨干教师基金资助项目
关键词 粒子滤波 混合建议分布 状态转移先验分布 似然建议分布 退火参数 自适应参数优化 particle filtering hybrid proposal distribution state transition prior distribution likelihood proposal distribution annealing parameter adaptive parameter optimization
  • 相关文献

参考文献7

  • 1Gordon N J, Salmond D J, Smith A F M. Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation[J]. IEE Proceedings on Radar and Signal Processing, 1993, 140(2): 107- 113.
  • 2Thrun S, Fox D, Burgard W, et al. Robust Monte Carlo Localization for Mobile Robots[J]. Artificial Intelligence, 2001, 128, (1/2): 99-141.
  • 3李善仓,张德运,杨振宇,杨鹏宏.无线传感器网络下的粒子滤波分布式目标跟踪算法[J].西安交通大学学报,2007,41(8):912-916. 被引量:1
  • 4Doucet A, Godsill S J, Andrieu C. On Sequential Monte Carlo Sampling Methods for Bayesian Filtering[J]. Statistics and Computing, 2000, 10(3): 197-208.
  • 5Arulampalam M S, Maskell S, Gordon N, et al. A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(20) 174-188.
  • 6杜正聪 ,王军 ,冯良豪 .粒子滤波中建议分布的选择[J].河北师范大学学报(自然科学版),2005,29(3):257-261. 被引量:3
  • 7Chen Zhe. Bayesian Filtering: From Kalman Filters to Particle Filters, and Beyond[D]. Hamilton, Canada: McMaster University, 2003.

二级参考文献24

  • 1DOUCET. Rao-Black wellised particle filtering for dynamic Bayesian networks [A]. Proc UAI2000[ C]. Cambridge U K:Calnbridge Univ Press,2000. 253-259.
  • 2HANZON B. A differential-geometric approach to approximate nonlinear filtering [ A]. DODSON C T J. Geometrization of Statistical Theory[ C]. Univ Lancaster : ULMD Pub, 1987.219-223.
  • 3ISARD M. Condensation:Conditional density propagation for visual tracking [J]. Int J Comput Vis, 1998,29( 1 ):5-28.
  • 4GODSILL S. Maximum a posteriori sequence estimation using Monte-Carlo particle filters [J ]. Ann Inst Statist Math,2001,53(1 ) :82-96.
  • 5VERMAAK J. Bayesian modeling and enhancement of speech signals [D]. Cambridge U K :Cambridge Univ,2000.
  • 6VERMAAK J. Particle methods for Bayesian modeling and enhancement of speech signals [J]. IEEE Trans Audo Speech Processing, 2002,10(3) : 173-185.
  • 7HUAAG Yu-fei. A hybrid importance function for particle filtering [J] IEEE Signal Processing Letters, 2004, 11 (3):404-406.
  • 8CHEN Z. Robust particle filters with applications in tracking and communications [R]. Halnilton, Ontario, Cannada:Adaptive Systems Lab,McMaster University,2003.
  • 9ARULAMPALAM M S. A tutorial on particle filters for online nonlinear/non-Gaussian bayesian tracking [ J ]. IEEE Trans Signal Processing,2002,50(2) : 174-188.
  • 10DE FREITAS J F G. Variational MCMC [ R]. Berkeley U S:UC Berkeley,2001.

共引文献2

同被引文献15

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部