期刊文献+

基于LBP的图像区域复制篡改检测 被引量:1

Detection of Image Region Duplication Forgery Based on LBP
下载PDF
导出
摘要 研究尺度不变特征变换(SIFT)和旋转不变局部二值模式(LBP)相结合的特征匹配方法,提出一种基于LBP的图像区域复制粘贴篡改检测算法。利用SIFT关键点检测方法检测图像中的所有关键点,计算以关键点为中心的周围图像区域的LBP特征,并将其作为关键点的特征描述,采用特征向量的欧式距离进行关键点匹配。实验结果表明,该算法在抗旋转、亮度变化处理和效率方面均优于基于主成分分析的检测算法。 After learning the image matching algorithm by combining Scale Invarian Feature Transform(SIFT) and the rotation-invariant Local Binary Patterns(LBP), this paper proposes a detection algorithm of image region copy-move forgery based on LBP. All keypoints are extracted from the image by applying the SIFT algorithm, and each keypoint is described by the rotation-invariant LBP, which are computed from the image patch centered at the keypoint. It matches the keypoint by using the feature vectors of Euclidean distance. Experimental results show that this algorithm performs better than the classical detection algorithm based on Principal Component Analysis(PCA) in terms of robustness against rotate operation, intensity adjustment and efficiency.
出处 《计算机工程》 CAS CSCD 2012年第16期226-228,236,共4页 Computer Engineering
基金 国家自然科学基金资助项目(60973113) 湖南省自然科学基金资助项目(09JJ3120) 湖南省教育厅科学研究基金资助项目(08C103 11C0036)
关键词 数字图像取证 图像区域复制粘贴篡改 尺度不变特征变换 局部二值模式 digital image forensics image region copy-move forgery Scale Invarian Feature Transform(SIFT) Local Binary Patterns(LBP)
  • 相关文献

参考文献7

  • 1Fridrich J, Soukal D, Lukas J. Detection of Copy-move Forgery in Digital Images[C]//Proceedings of Digital Forensic Research Workshop. Cleveland, USA: [s. n.], 2003.
  • 2Popescu A C, Farid H. Exposing Digital Forgeries by Detecting Duplicated Image Regions[R]. Hanover, USA: Dartmouth College, Tech. Rep.: TR2004-515, 2004.
  • 3郑永斌,黄新生,丰松江.SIFT和旋转不变LBP相结合的图像匹配算法[J].计算机辅助设计与图形学学报,2010,22(2):286-292. 被引量:112
  • 4Lowe D G. Distinctive Image Features from Scale-invariant Key Points[J]. International Journal of Computer Vision, 2004, 60(2):91-110.
  • 5Ojala T, Pietikinen M. Multiresolution Gray-scale and Rotation- invariant Texture Classification with Local Binary Patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987.
  • 6Maenpaa T, Pietikainen M. Texture Analysis with Local Binary Patterns[M]//Chen C H, Pau L F, Wang P S P. Handbook of Pattern Recognition and Computer Vision. 3rd ed. [S. 1.]: World Scientific, 2005.
  • 7Lowe D. Distinctive Image Feattu'es from Scale-invariant Key- points[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.

二级参考文献8

  • 1孙宁,冀贞海,邹采荣,赵力.基于局部二元模式算子的人脸性别分类方法[J].华中科技大学学报(自然科学版),2007,35(S1):177-181. 被引量:20
  • 2Li J, Allinson N M. A comprehensive review of current local features for computer vision [J]. Neurocomputing, 2008, 71 (10/12) : 1771-1787.
  • 3Mikolajczyk K, Tuytelaars T, Schmid C, etal. A comparison of affine region detectors [J]. International Journal of Computer Vision, 2005, 65(1/2): 43-72.
  • 4Mikolajczyk K, Sehmid C. A performance evaluation of local descriptors [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630.
  • 5Lowe D G. Distinctive image features from seale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 6Ke Y, Sukthankar representation for local R. PCA-SIFT: a more distinctive image descriptors [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Washington D C, 2004, 2:506-513.
  • 7Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987.
  • 8Herkkila M, Pietikainen M, Schmid C. Description of interest regions with local binary patterns [J]. Pattern Recognition, 2009, 42(3): 425-436.

共引文献111

同被引文献16

  • 1GK Birajdar, VH Mankar. Digital image forgery detection using passive techniques: A survey[J]. Digital Investigation, 2013, 10 (3): 226-245.
  • 2Ansari MD, Ghrera SP, Tyagi V. pixel-based image forgery detection: A review [J]. IETE Journal of Education, 2014, 55 (1): 40-46.
  • 3Hashmi MF, Hambarde AR. Copy nmve forgery detection using DWT and SIFT features [J]. Intelligent Systems Design and Applications, 2013, 34 (10): 188-193.
  • 4Irene Amerini, Lamberto BaUan. Copy-move forgery detection and localization by means of robust clustering with J-Linkage [J]. Signal Processing; Image Communication, 2013, 28 (6): 659-669.
  • 5Zhou SR, Yin JP, Zhang JM. Local binary pattern (LBP) and local phase quantization (LBQ) based on Gabor filter for face representation [ J ]. Neurocomputing, 2014, 116 ( 20 ): 260-264.
  • 6Yerushalmy I, Hel-Or H. Digital image forgery detection based on lens and sensor aberration [J]. International Journal of Computer Vision, 2011, 92 (1): 71-77.
  • 7Zimba M, Xingrning S. DWT-PCA (EVD) based copy-move image forgery detection [J]. International Journal of Digital Con- tent Technology and its Applications, 2011, 5 (1): 251-258.
  • 8Duch A, Jimfnez RM, Martinez C. Selection by rank in K- dimensional binary search trees [J]. Random Structures & Algorithms, 2012, 45 (1): 14-37.
  • 9Misra I, Moorthi SM, Dhar D. An automatic satellite image registration technique based on Harris corner detection and random sample consensus (RANSAC) outlier rejection model [J]. Recent Advances in Inforrnatio, 2012, 15 (7): 68-73.
  • 10Muhammad G, Hussain M, Bebis G. Passive copy move image forgery detection using undecimated dyadic wavelet transform [J]. Digital Investigation, 2012, 9 (1): 49-57.

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部