期刊文献+

基于广义回归神经网络与遗传算法的玻璃钢渔船船型要素优化研究 被引量:8

Optimization Research of Ship Parameters for FRP Fishing Vessels Based on GRNN and Genetic Algorithm
下载PDF
导出
摘要 利用神经网络的非线性拟合能力,建立了基于广义回归神经网络的"船型要素-船体阻力"数学模型,提高了模型的拟合精度。同时结合遗传算法的非线性寻优能力,利用改进的遗传算法完成了船型要素的优化设计。优化结果可以作为玻璃钢渔船初步设计的技术参考。 The mathematical model of "ship parameters - ship resistance"for FRP fishing vessels, based on generalized regression neural networks (GRNN), is established by using the nonlinear fitting ability of neural networks to improve the model fitting precision. At the meantime, the ship parameters' optimizing design is accomplished by the improved genetic algorithm (GA) with its nonlinear optimization ability. The optimized results can be used as the reference for the preliminary design of FRP fishing vessels.
出处 《船舶工程》 CSCD 北大核心 2012年第4期18-20,65,共4页 Ship Engineering
基金 国家公益性行业科研专项(渔业节能关键技术研究与重大装备开发 201003024)
关键词 船型要素 船体阻力 广义回归神经网络 遗传算法 ship parameters ship resistance GRNN genetic algorithm
  • 相关文献

参考文献4

二级参考文献17

  • 1桑松,林焰,纪卓尚,赵占军,纪国利,罗炳学.45000吨化学品运输船主尺度数学模型建立[J].船舶工程,2001(4):11-13. 被引量:10
  • 2管琪明,尹健,罗延科,马辉.基于神经网络和遗传算法的结构动力特性优化设计[J].机械科学与技术,2005,24(1):35-37. 被引量:1
  • 3孙国富,鹿晓阳,赵晓伟,汲淑丽.钢框架优化遗传算法的若干改进[J].山东建筑工程学院学报,2005,20(2):13-17. 被引量:3
  • 4刘琼荪,周声华.基于自适应惩罚函数法的混合遗传算法[J].重庆大学学报(自然科学版),2006,29(6):78-81. 被引量:14
  • 5张宗炳.遗传与进化[M].北京:人民教育出版社,1981..
  • 6Lippmamm R P. Introduction of Computing with Neural Nets[J]. IEEE ASSP Magazine, 1987,4: 4- 22.
  • 7Funahashi K I. On the approximate realization of continuous mappings by neural networks [J].Neural Networks, 1989,2(3) : 183-192.
  • 8Chen Aiguo, Ye Jiawe. Research on the genetic neural network for the computation of ship resistance [C]. 2009 International Conference on Computation Intelligence and Natural Computing. Wuhan, China, 2009.
  • 9Chen Aiguo, Ye Jiawe. Research on four layer back propagation neural network for the computation of ship resistance[C]. 2009 IEEE International Conference on Mechatronics and Automation. Changchun, China, 2009.
  • 10Zhang Ling,Zhang Xianda. MIMO channel estimation and equalization using three-layer neural networks with feedback [J]. Tsinghua Science And Technology. 2007,12(6) :16-19.

共引文献95

同被引文献99

  • 1陈华根,李丽华,许惠平,陈冰.改进的非常快速模拟退火算法[J].同济大学学报(自然科学版),2006,34(8):1121-1125. 被引量:46
  • 2范小宁,林焰,纪卓尚.船舶管路三维布局优化的变长度编码遗传算法[J].中国造船,2007,48(1):82-90. 被引量:31
  • 3李冬琴,王丽铮,王呈方.支持向量机回归方法在船型要素建模中的应用[J].中国舰船研究,2007,2(3):18-21. 被引量:6
  • 4WANG Yunlong, WANG Chen, LIN Yan. Ship cabin layout optimization design based on the improved genetic algorithm method[J]. Applied Mechanics and Materials, 2013(300): 146-149.
  • 5农业部渔业局.2014中国渔业统计年鉴[M].北京:中国农业出版社,2014:29-33.
  • 6LIU XINGGUO, XU HAO, WANG XIAODONG, et al. An ecological engineering pond aquaculture recirculating system for effluent purification and water quality control [ J ] CLEAN - Soil, Air, Water, 2014,42(3) ;221-228.
  • 7TAI HAIJIANG, LIU SHUANGYIN, LI DAOLIANG, et al. Muhi-environmental factor monitoring system for aquicuhure based on wireless sensor networks[ J]. Sensor Letters, 2012, 10(1/2) :265-270.
  • 8SCOATT D. Bergenetal design principles for ecological engineering [ J ]. Ecological Engineering,2001,18 (2) :201-210.
  • 9中国水产频道.国外的设施渔业是怎么发展的?[EB/OL].(2015-01-14)[2015-01-22].http://www.fishfirst.en/article-43676-1.html.
  • 10HELSLEY C E, KIM J W. Mixing downstream of a submerged fish cage: a numerical study [ J ]. IEEE Journal of Oceanic Engineering,2005,1 ( 30 ) : 12-19.

引证文献8

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部