期刊文献+

改进PSO训练的BPNN方法的舰船主尺度建模 被引量:7

Modeling of the principal dimensions of large vessels based on a BPNN trained by an improved PSO
下载PDF
导出
摘要 利用改进粒子群优化算法训练的BP神经网络(BPNN)对以航母为代表的大型舰船主尺度进行了回归分析.对粒子群优化算法(PSO)的学习因子进行了关于迭代进程的自适应调整,并将改进后的PSO算法对BPNN训练过程进行优化.利用新型BPNN对典型航母主尺度(总长、总宽、设计水线长、设计水线宽、吃水与满载排水量)进行数学建模,与基于传统多项式回归的结果进行对比分析.结果表明经改进PSO训练的BPNN具有更高的输出精度且具有良好的分段光滑特性,这对于大型舰船方案论证与总体设计可起到重要的指导性作用. A back propagation neural network (BPNN) trained by an improved particle swarm optimization (PSO) was applied to the principal dimensions of large vessels by regression analysis. First, the improved PSO learning factors conceming the iterative process were adjusted adaptively and the BPNN trained process was optimized by using an improved PSO. Secondly, a new BPNN method was applied to establish a mathematic model of an aircraft's principal dimensions (including overall length, breadth moulded, length of the design waterline, breadth of the design waterline, draft, and full load displacement). Finally, compared with the results of traditional polynomial regression, a BPNN trained by an improved PSO has higher accuracy and fine characteristics of smooth at every subsection. Therefore, the mathematic model has a guidance effect on the scheme demonstration and overall design of large vessels.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2012年第7期806-810,共5页 Journal of Harbin Engineering University
基金 国家自然科学基金资助项目(61004008) 中央高校基本科研业务费专项基金资助项目(HEUCF100105)
关键词 舰船主尺度 回归分析 改进粒子群优化算法 BP神经网络 large vessels principal dimensions regression analysis improved particle swarm optimization backpropagation neural network (BPNN)
  • 相关文献

参考文献11

二级参考文献49

共引文献121

同被引文献71

  • 1唐发明,王仲东,陈绵云.支持向量机多类分类算法研究[J].控制与决策,2005,20(7):746-749. 被引量:90
  • 2陈华根,李丽华,许惠平,陈冰.改进的非常快速模拟退火算法[J].同济大学学报(自然科学版),2006,34(8):1121-1125. 被引量:46
  • 3孙来军,胡晓光,纪延超.改进的小波包-特征熵在高压断路器故障诊断中的应用[J].中国电机工程学报,2007,27(12):103-108. 被引量:70
  • 4丁举.考虑算法的实船试航船速测量不确定度分析[J].中国造船,2007,48(2):143-148. 被引量:5
  • 5Guopu Zhu,Sam Kwong.Gbest-guided artificial bee colony algorithm for numerical function optimization[J].Applied Mathematics and Computation.2010(7)
  • 6Fei Kang,Junjie Li,Zhenyue Ma.Rosenbrock artificial bee colony algorithm for accurate global optimization of numerical functions[J].Information Sciences.2011(16)
  • 7Zhang Xiao-yuan, Zhou Jian-zhong, Guo Jun, et al. Vibrant fault diagnosis for hydroelectric generator units with a new combination of rough sets and support vector machine [ J ]. Expert Systems With Applications, 2012, 39 ( 3 ) : 2621 - 2628.
  • 8Peri D,Campana E F.High-fidelity models and multi-objective global optimization algorithms in simulation-based design[J].Journal of Ship Research,2005,49(3):159-175.
  • 9Bogumil Kaminski.A method for the updating of stochastic Kriging meta-models[J].European Journal of Operational Research,2015,247(3):859-866.
  • 10Praczyk T.Using evolutionary neural networks to predict spatial orientation of a ship[J].Neurocomputing,2015,166(10):229-243.

引证文献7

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部