期刊文献+

半监督系数选择法的人脸识别 被引量:6

A semi-supervised coefficient selection method for face recognition
下载PDF
导出
摘要 针对人脸识别过程中图像数据维数过高以及需要大量类别标记的问题,提出一种半监督离散余弦变换系数选择法,用以实现数据降维并提高识别率.该算法首先将图像数据进行离散余弦变换,根据频率特征通过预掩模选取有用信息;然后进行半监督约束聚类,利用少量有标记样本的约束集,对训练图像进行聚类;根据类别搜索较高的判别系数值,获得系数选择掩模以及训练图像的投影阵.将测试图像离散余弦变换阵在此掩模上投影,计算其与训练图像投影阵距离,利用分类器进行分类.在ORL与Yale人脸数据库上的实验结果表明:所提方法的性能优于传统方法,并与主成分分析与线性判别分析进行组合,获得了90%以上的识别率. In face recognition, there exist the problems of high dimensionality of image data and requiring many class labels. To overcome these, a semi-supervised discrete cosine transform (DCT) coefficient selection method was proposed to reduce dimensions and improve recognition accuracy. First, the DCT was performed on an image database, and useful features were selected by pre-masking based on frequency features. Second, with a few labeled samples, semi-supervised constrained clustering was used for clustering on training image sets. Then, higher discriminant coefficient values were obtained by class labels, and coefficient selection masking and projection of training images were carried out. Finally, the discrete cosine transform the test images was projected on the masking, the distance between test image projection and training image projection was computed, and a class of test images was estimated and classified based on the minimal distance classifier. Experimental results on ORL and Yale face databases show that the performance of the proposed method is better than traditional methods. Furthermore, the proposed method can be combined with principal component analysis (PCA) or linear diseriminant analysis (LDA), and obtain more than 90% recognition rate.
作者 崔鹏 张汝波
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2012年第7期855-861,共7页 Journal of Harbin Engineering University
基金 国家863计划资助项目(2009AA04Z215) 黑龙江省教育厅资助项目(11551086)
关键词 半监督约束聚类 人脸识别 离散余弦变换 主成分分析 线性判别分析 semi-supervised constrained clustering face recognition discrete cosine transform principal compo-nent analysis (PCA) linear diseriminant analysis (LDA)
  • 相关文献

参考文献16

  • 1KIRBY M, SIROVICH L. Application of the Karhunen-Lo- eve procedure for the characterization of human faces [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 1990, 12 (1): 103-108.
  • 2牛星,席志红,金子正秀.基于改进AAM的人脸特征点提取[J].应用科技,2011,38(4):35-38. 被引量:3
  • 3TURK M, PENTLAND A. Eigenfaces for recognition [ J ]. International Journal of Cognitive Neuroscience, 1991, 3 (1) : 71-86.
  • 4苏景龙,林天威,王科俊,贲晛烨.视频流下的人脸检测与跟踪[J].应用科技,2011,38(3):5-11. 被引量:6
  • 5ZHUANG X S, DAI D Q. Improved discriminant analysis for high-dimensional data and its application to face recogni- tion[J]. Pattern Recognition, 2007, 40 (5) : 1570-1578.
  • 6GAO Q X, ZHANG L, ZHANG D. Face recognition using FLDA with single training image per-person [ J ]. Applied Mathematics and Computation, 2008, 205 (12) : 726-734.
  • 7ZHAO H T, YUEN P C. Incremental linear discriminant analysis for face recognition [ J ]. IEEE Trans Syst Man Cy- bern B, 2008, 38(1) : 210-211.
  • 8赵颖.基于改进的核判别分析的人脸识别算法研究[J].哈尔滨理工大学学报,2010,15(3):19-22. 被引量:4
  • 9BASU S. Semi-supervised clustering: probabilistic models, algorithms and experiments [ D ]. Austin : The University of Texas, 2005 : 32-33.
  • 10ZHU X J. Semi-supervised learning literature survey [ R ]. Madison: University of Wisconsin-Madison, 2005 : 28-31.

二级参考文献16

  • 1叶敬福,詹永照.基于Gabor小波变换的人脸表情特征提取[J].计算机工程,2005,31(15):172-174. 被引量:25
  • 2王磊,邹北骥,彭小宁,周凌.一种改进的提取人脸面部特征点的AAM拟合算法[J].电子学报,2006,34(8):1424-1427. 被引量:13
  • 3王科俊,侯本博.步态识别综述[J].中国图象图形学报,2007,12(7):1152-1160. 被引量:44
  • 4LIU C, WECHSLER H. Independent Component Analysis of Gabor Features for Face Recognition [ J ]. IEEE Trans. Neural Networks, 2003, 14(4) : 919928.
  • 5WISKOTI" L, FELLOUS J M, KRUGER N, et al. Face Recognition by Elastic Bunch Graph Matching [ J ]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1997, 19 ( 7 ) : 775 - 779.
  • 6ZHANG Haihong, ZHANG Bailing, HUANG Weimin, et al. Gabor Wavelet Associative Memory for Face Recognition [ J ]. IEEE Trans. Neural Networks, 2005, 16( 1 ) :275 -278.
  • 7CHENGJUN LIU, HARRY WECHSLER. Gabor Feature Based Classification Using the Enhanced Fisher Linear Discriminant Model for Face Recognition[ J ]. IEEE Trans. Image Processing, 2002, 11 (4) : 467 - 476.
  • 8CEVIKALP H, NEARNTU M, WIKES M, et al. Discriminative Common Vectors for Face Recognition [ J ]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2005, 27( 1 ) : 4 -13.
  • 9MATYHEWS I, BAKER S. Active appearance models revisited [ J ]. International Journal of Computer Vision, 2004, 60 (2) : 135-164.
  • 10COOTES T F, WALKER K, TAYLOR C J. View-based active appearance models [ C ]//Proc of IEEE International Conference on Automatic Face and Gesture Recognition. Grenoble, France, 2002: 227-232.

共引文献10

同被引文献60

  • 1闫宏,张兴周,刘晓瑞.基于特征脸的人脸识别系统[J].应用科技,2007,34(4):20-23. 被引量:4
  • 2WitoldPedrycz.基于知识的聚类:从数据到信息粒[M].于福生,译.北京:北京师范大学出版社,2008:79-87.
  • 3Turk M, Penfland A. Eigenfaces for Recognition. Journal of Cogni- tive Neuroscience, 1991,3( 1 ) : 71-86.
  • 4Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs Fisherfaces: Recognition Using Class Specific Linear Projection IEEE Trans on Pattern Analysis and Machine Intelligence, 1997 19(7) : 711-720.
  • 5Roweis S T, Saul L K. Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science, 2000, 290 ( 5500 ) : 2323 - 2326.
  • 6Belkin M, Niyogi P. Laplaeian Eigenmaps for Dimensionality Reduction and Data Representation. Neural Computation, 2003, 15(6) : 1373-1396.
  • 7Tenenbaum J B, de Silva V, Largford J C. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science, 2000,290(5500) : 2319-2323.
  • 8He Xiaofei, Yan Shuicheng, Hu Yuxiao, et al. Face Recognition Using Laplacianfaces. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340.
  • 9Yang Jian, Zhang D, Yang Jingyu, et al. Globally Maximizing, Locally Minimizing: Unsupervised Discriminant Projection with Applications to Face and Palm Biometrics. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007, 29 (4) : 650-664.
  • 10Yu Weiwei, Teng Xiaolong, Liu Chongqing. Face Recognition Using Discriminant Locality Preserving Projections. Image and Vision Computing, 2006, 24 (3) : 239-248.

引证文献6

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部