期刊文献+

用于相似字识别的手写汉字特征优化方法 被引量:3

A feature optimization method for similar handwritten Chinese character recognition
下载PDF
导出
摘要 针对常用的手写汉字特征提取方法不利于后续线性区分分析(LDA)特征变换中发现相似汉字的细微区分信息,通过将传统的手写汉字特征提取和LDA变换表述为像素级特征的二维特征矩阵优化问题,并利用二维线性区分分析(2DLDA)变换进行手写汉字特征矩阵的优化,提出了一种用于手写相似汉字识别的特征优化方法.该方法可以避免高维像素级特征向量利用LDA变换进行优化中的散度矩阵奇异性问题.对手写相似汉字的识别实验表明,相对于传统的方法,经过所提方法优化的梯度特征,识别错误率可以降低48.86%,验证了方法的有效性. In popular handwritten Chinese character feature extraction methods, feature vectors are mainly construeted by using sub-region partition and summing up the pixel feature inside sub-regions. This method is not conducive to find the subtle discriminative information among similar handwritten Chinese characters in subsequent Linear Discriminant Analysis (LDA) transformation. By representing the traditional feature extraction and LDA transformation as an optimization task on a two-dimensional feature matrix of the pixel level features, and using 2DLDA for the optimization of the handwritten Chinese character feature matrix, a new feature optimization method for similar handwritten Chinese character recognition was proposed. The proposed method can avoid the singularity problem of scatter matrices when using the LDA directly to optimize the high dimensional pixel-level feature vector. The experimental results on similar handwritten Chinese character recognition indicated that the optimized gradient features using the proposed method can effectively improve the recognition performance, and the recognition error rate reduction reaches 48.86% compared to the traditional method, showing the effectiveness of the proposed approach.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2012年第7期887-893,共7页 Journal of Harbin Engineering University
基金 国家自然科学基金资助项目(60772116 61075021) 广东省自然科学基金资助项目(2011B090400146)
关键词 字符识别 特征优化 2DLDA 手写相似汉字识别 character recognition feature optimization two-dimensional linear discriminant analysis similar hand-written Chinese character recognition
  • 相关文献

参考文献19

  • 1LIU C L, FUJISAWA H. Classification and learning meth- ods for character recognition: advances and remaining prob- lems [ M ]// MARINAI S, FUJISAWA H. Machine Learn- ing in Document Analysis and Recognition. Berlin: Springer -Verlag, 2008: 139-161.
  • 2LIU C L, YIN F, WANG D H, et al. Chinese handwriting recognition contest 2010 [ C ] //Proc of 2010 Chinese Con- ference on Pattern Recognition. Beijing, China, 2010: 1-5.
  • 3JIN L W, WEI G. Handwritten Chinese character recogni- tion with directional decomposition cellular features [ J ]. Journal of Circuits, System, and Computers, 1998, 8(4) : 517 -524.
  • 4DING K, LIU Z B, JIN L W, et al. A comparative study of Gabor feature and gradient feature for handwritten Chinese character recognition[ C]//Proc of 2007 Int Conf on Wave- let Analysis and Pattern Recognition. Beijing, China, 2007: 1182-1186.
  • 5HUO Q, GE Y, FENG Z D. High performance Chinese OCR based on Gabor features, discriminative feature extrac- tion and model training[ C]//Proc of IEEE Int Conf Acous- tics, Speech, and Signal Processing. Salt Lake City, 2001 :1517-1520.
  • 6LIU C L, NAKASHIMA K, SAKO H. et al. Handwritten digit recognition: investigation of normalization and feature extraction techniques [ J ]. Pattern Recognition, 2004, 37 ( 2 ) : 265-279.
  • 7LIU H, DING X. Handwritten character recognition using gradient feature and quadratic classifier with multiple dis- crimination schemes [ C]//Proc of 8th Int Conf on Docu- ment Analysis and Recognition. Seoul, 2005 : 19-23.
  • 8BAI Z L, HUO Q. A study on the use of 8-directional fea- tures for online handwritten Chinese character recognition [ C]//Proc of 8th Int Conf on Document Analysis and Rec- ognition. Seoul, 2005: 262-266.
  • 9LIU C L. Normalization-cooperated gradient feature extrac- tion for handwritten character recognition [ J ]. IEEE Trans Pattern Analysis and Machine Intelligence, 2007. 29 (8) : 1465-1469.
  • 10LONG T, JIN L W. Building compact MQDF classifier for large character set recognition by subspace distribution sha- ring [ J ]. Pattern Recognition, 2008, 41 (9) : 2916-2925.

同被引文献32

  • 1陈章辉,黄小晖,陈鹏飞,李文龙,朱思尧.基于双弹性网格的手写体汉字识别[J].计算机应用,2009,29(2):395-397. 被引量:9
  • 2封筠,王彦芳,杨扬,王小平,刘永军.SVM多值分类器在脱机手写体相似汉字识别中的应用[J].计算机工程与应用,2004,40(27):200-202. 被引量:8
  • 3刘伟,朱宁波,何浩智,李德鑫,孙发军.基于弹性网格模糊特征的手写体汉字识别方法[J].中文信息学报,2007,21(3):117-121. 被引量:10
  • 4田盛丰,黄厚宽,李洪波.基于支持向量机的手写体相似字识别[J].中文信息学,2000,14(3):37-41.
  • 5刘昭麟,黄志斌,翁睿好,等.形音相近的易混淆汉字的搜寻与应用[EB/0L].(2008.08.23)[2012.11.20].http://forum.dme.nt-nu.edu.tw/-rocling2008/.
  • 6国家语言文字工作委员会.GF3001-1997信息处理用GB13000.1字符集汉字部件规范[S].北京:语文出版社,1997.
  • 7Liu C L, Yin F, Wang D H, et al. Online and Offline Handwritten Chinese Character Recognition: Benchmarking on New Databases[J]. Pattern Recognition, 2013, 46(1): 155-162.
  • 8Gao T F, Liu C L. High Accuracy Handwritten Chinese Character Recognition Using LDA-based Compound Distances[J]. Pattern Recognition, 2008, 41(11): 3442-3451.
  • 9Izenman A J. Linear Discriminant Analysis[M]. New York: Springer, 2008: 237-280.
  • 10Leung K C, Leung C H. Recognition of Handwritten Chinese Characters by Critical Region Analysis[J]. Pattern Recognition, 2010, 43(3): 949-961.

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部