期刊文献+

近邻传播的文本聚类集成谱算法 被引量:9

A document cluster ensemble spectral algorithm based on affinity propagation
下载PDF
导出
摘要 针对现有聚类集成谱算法聚类结果不稳定的问题,引入近邻传播聚类思想,设计了基于近邻传播的聚类集成谱算法(APCESA).该算法先由聚类集成和谱分得到空间结构相对简单的文本低维嵌入,然后通过近邻传播算法得到最终的聚类结果.在谱分解过程中,采用矩阵变换方法,避免了谱算法中特征值分解的高昂计算代价.对真实文本数据集的实验结果表明,所提算法比对比算法聚类更稳定,且聚类结果的NMI值和ANMI值均高于对比算法. The existing cluster ensemble spectral algorithm are mostly unstable. To solve this problem, an affinity propagation-based cluster ensemble spectral algorithm was proposed, which brings in the idea of affinity propagation clustering. The algorithm utilized cluster ensemble and spectral analysis to achieve the low dimensional embedding of documents, and obtained the final clustering results by using an affinity propagation clustering algorithm. To avoid the high computational cost of eigenvalue decomposition in a spectral algorithm, matrix transformation was used in this paper. Experiments using real-world document sets show that the proposed algorithm is more stable than the compared methods, both NMI and ANMI values of the clustering result are higher than that of the comparison method.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2012年第7期899-905,共7页 Journal of Harbin Engineering University
基金 国家自然科学基金资助项目(60975042)
关键词 近邻传播 聚类集成 文本聚类 谱聚类 矩阵变换 affinity propagation algorithm cluster ensemble document clustering spectral clustering matrix trans-formation
  • 相关文献

参考文献5

二级参考文献41

  • 1TIAN Zheng,LI XiaoBin,JU YanWei.Spectral clustering based on matrix perturbation theory[J].Science in China(Series F),2007,50(1):63-81. 被引量:19
  • 2罗会兰,孔繁胜,李一啸.聚类集成中的差异性度量研究[J].计算机学报,2007,30(8):1315-1324. 被引量:36
  • 3Frey B J and Dueck D. Clustering by passing messages between data points. Science, 2007, 315(5814): 972-976.
  • 4Givoni I E and Frey B J. A binary variable model for affinity propagation. Neural Computation, 2009, 21(6): 1589-1600.
  • 5Jia Sen, Qian Yun-tao, and Ji Zhen, Band hyperspectral imagery using affinity. Proceedings of the 2008 Digital Image Techniques and Applications, Canberra, ACT selection for Propagation. Computing: 1-3.12.2008:137-141.
  • 6Gang Li, Lei brain MR International (ISCAS 2009) Guo, and Liu Tian-ming, et at. Grouping of images via affinity propagation. IEEE Symposium on Circuits and Systems, 2009 Taipei, Taiwan, 5.24. 2009: 2425-2428.
  • 7Dueck D, Frey B J, and Jojic N, et al. Constructing treatment portfolios using affinity propagation[C]. Proceedings of 12th Annual International Conference, RECOMB 2008. Singapore. 3.30-4.2, 2008: 360-371.
  • 8Leone M, Sumedha, and Weigt M. Clustering by soft-constraint affinity propagation: applications to gene- expression data. Bioinformatics, 2007, 23(20): 2708-2715.
  • 9Alexander Hinneburg and Daniel A Keim. A general approach to clustering in large databases with noise. Knowledge and Information Systems, 2003, 5(4): 387-415.
  • 10Little M A, McSharry P E, Hunter E J, and Lorraine O. Suitability of dysphonia measurements for telemonitoring of Parkinson's disease. IEEE Transactions on Biomedical Engineering, 2009, 56(4): 1015-1022.

共引文献336

同被引文献87

引证文献9

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部