期刊文献+

2-循环系数矩阵对称MSOR法最优参数估计 被引量:2

The optimum parameters of the convergence of the symmetric MSOR for 2-cyclic coefficient matrices
下载PDF
导出
摘要 讨论了A为2-循环系数矩阵的线性方程组AX=b的对称MSOR迭代求解问题.在线性方程组AX=b的系数矩阵为2-循环系数矩阵且Jacobi迭代矩阵的特征值都是实数或纯虚数的情况下,估计对称MSOR方法的最优参数,且举例说明所得的结果. The symmetric MSOR iterative method for solving linear systems of AX = b is discussed where A is a 2-cyclic coefficient matrices. The optimum parameters of the symmetric MSOR method was given for solving the linear system AX=b with 2-cyclic coefficient matrices when the characteristics of the Ja- cobi iteration matrix is real number or purely imaginary. And the results was illustrated by example.
出处 《纺织高校基础科学学报》 CAS 2012年第2期169-172,176,共5页 Basic Sciences Journal of Textile Universities
基金 国家自然科学基金资助项目(60671063)
关键词 Jacobi法 对称MSOR法 谱半径 最优参数 j acobi method symmtric MSOR method spectral radius optimum parameter
  • 相关文献

参考文献9

  • 1YOUNG D M. Iterative solution of large linear systems[M]. New York: Academic Press, 1971.
  • 2BOUKAS L A,MIISSIRLIS N M. The parallel local modified SOR for nonsymmetric linear systems[J]. Int J Comput Math, 1998,68 : 153-174.
  • 3刘晓光,畅大为.(1,2)相容次序矩阵SOR迭代法的敛散性[J].纺织高校基础科学学报,2010,23(3):303-308. 被引量:2
  • 4HADJIDIMOS A, YEYIOS A. Some recent results on the modified SOR theory[J]. Linear Algebra Appl, 1991,154/ 155/156 : 5-21.
  • 5HENCEG D,MARTINS M M,TRIGO M E. On the convergence of the MSOR methods for some classes of matries [J]. SIAM J Matrix Anal Appl, 1993,14 : 122-131.
  • 6魏小梅,畅大为.相容次序矩阵SAOR方法收敛的充要条件[J].纺织高校基础科学学报,2006,19(3):201-204. 被引量:6
  • 7DARVISHI M T, HESSARI P. On convergence of the symmetric modified successive overrelaxation method for 2-cy- clic matrices[J]. Applied Mathematics and Computation, 2006,183: 953-960.
  • 8熊劲松,畅大为.2-循环系数矩阵对称MSOR法收敛的充分必要条件[J].纺织高校基础科学学报,2011,24(4):549-553. 被引量:5
  • 9TAYLOR P J. A generalization of systematic relaxation methods for consistently ordered matrices[J]. Numer Math, 1969,13 : 377-395.

二级参考文献13

  • 1宋永忠.P-循环矩阵和块AOR方法(英)[J].应用数学,1997,10(2):32-36. 被引量:2
  • 2MARTINS M M. A note on convergence of the MSOR method[J]. Linear Algebra Appl, 1990,141:223-226.
  • 3DERCEG D, MARTINS M M,TRIGO M E. On convergence of the MSOR method for some classes of matrices[J]. SI- AM J Matrix Anal Appl, 1993,14 : 122-131.
  • 4DARVISHI M T, HESSARI P. On convergence of the symmetric modified successive overrelaxation method for 2-cy- clic matrices[J]. Applied Mathematics and Computation, 2006,183 : 953-960.
  • 5DARVISHI M T,KHOSRO-Aghdam R. Symmetric successive overrelaxation methods for rank deficient linear system [J]. Appl Math Comput,2006,173(1) :404-420.
  • 6YOUNG D M. Iterative solution of large linear systems[M]. New York:Academic Press, 1971.
  • 7RICHARD S. Varge. Matrix iterative analysis[M].北京:科学出版社,2006.
  • 8张引.迭代求解线性方程组FBAOR方法[J].高等学校计算数学学报,1987,12(4):354-365.
  • 9VARGA R S.Matrix Iterative Analysis[M].Englewood Cliff N J:Prentice Hall Inc,1962.
  • 10YOUNG D M.Iterative Solution of Large Linearsystem[M].New York,London:Academic Press,1971:142-144.

共引文献9

同被引文献9

  • 1胡家赣.线性代数方程组的迭代解法[M].北京:科学出版社,1997.29.
  • 2YOUNG D M. Iterative solution of large linear systems[M]. New York: Academic Press, 1971.
  • 3RICHARDSVarge.Matrixiterativeanalysis[M].北京:科技出版社,2006.
  • 4MARTINS M M. A note on the convergence of the MSOR method[J]. Linear Algebra Appl, 1990,141:223-226.
  • 5DERCEG D, MARTINS M M,TRIGO M E. On convergence of the MSOR method for some classes of matrices[J]. SI- AM J Matrix Anal Appl.1993,14(1)..122-131.
  • 6DARVISHI M T, HESSARI P. On convergence of the symmetric modified successive overrelaxation method for 2-cy- clic matrices[J]. Applied Mathematics and Computation, 2006,183 (2) : 953-960.
  • 7高树玲,畅大为.相容次序矩阵AOR迭代收敛的充要条件[J].纺织高校基础科学学报,2009,22(2):229-231. 被引量:8
  • 8熊劲松,畅大为.2-循环系数矩阵对称MSOR法收敛的充分必要条件[J].纺织高校基础科学学报,2011,24(4):549-553. 被引量:5
  • 9董瑾,畅大为,杨青青,周冬梅.一类2-循环系数矩阵对称MSOR法收敛的充分条件[J].纺织高校基础科学学报,2014,27(2):222-226. 被引量:2

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部