期刊文献+

一类Krylov子空间方法在求解Sylvester方程的应用

Application of a Kind of Krylov Subspace Methods in Solving the Sylvester Equation
下载PDF
导出
摘要 提出了一种求解Sylvester方程AX+XB=EFT的块Krylov子空间方法。当矩阵A和B非常大,并且右侧的的秩很小时,给出如何求解精确低秩近似解。理论结果和数值实例证明了方法的有效性。 Block Krylov subspaee methods for solving the Sylvester matrix equationAX + XB = EFT is proposed. When both matrices A and B are large and the right-hand side matrix is of small rank, it is shown that how to extract low-rank ap- proximations. Some theoretical results are given and numerical experiments show the effectiveness of these block methods.
出处 《四川理工学院学报(自然科学版)》 CAS 2012年第4期89-92,共4页 Journal of Sichuan University of Science & Engineering(Natural Science Edition)
关键词 KRYLOV子空间 SYLVESTER方程 Arnoldi算法 Krylov subspace Sylvester equations Arnoldi algorithm
  • 相关文献

参考文献14

  • 1Datta B N, Datta K. Theoretical and computational aspects of some linear algebra problems in control the- ory[M]. Amsterdam:Elsevier,1986.
  • 2Van Dooren P.Grammian based model reduction of large scale-dynamical systems[M]. London: Chapman, Hall (eds).CRC press2000.
  • 3Calvetti D,Reichel L.Application of ADI iterative meth- ods to the restoration of noisy images[J].SIAM Journal on Matrix Analysis and Applications,1996,17:165-186.
  • 4Baur U, Benner P. Factorized Solution of Lyaptmov Equations Based on Hierarchical Matrix Arithmetic[J]. Computing.2006,78 (3):211-234.
  • 5Datta B N.Numerical Methods for Linear Control Sys- tems Design and Analysis[M].Amsterdam:Elsevier Ac- ademic Press,2003.
  • 6叶超,胡劲松.Riccati方程的几个可积类型[J].四川理工学院学报(自然科学版),2008,21(4):18-20. 被引量:3
  • 7Golub G H,Nash S,Van Loan C.A Hesselaberg-Schur method for the problemAX + XB = C [J]. IEEE Transaetionson Automatic Control, 1979, 24: 909- 913.
  • 8Bartels R H, Stewart G W. Algorithm 432 : Solution of the matrix equation AX + XB = C [ J]. Communica- tions of the ACM, 1972,15:820-826.
  • 9El Guennouni A, Jbilou K, Riquet A J. Block Krylov subspace methods for solving large Sylvester equa- tions[ J]. Numerical Algorithms,2002,29:75-96.
  • 10Jbilou K. Low rank approximate solutions to large Sylvester matrix equations [ J ]. Applied Mathemat-its and Computation,2006,177:365-376.

二级参考文献9

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部