期刊文献+

视频图像序列中运动目标区域检测算法研究

Research of Moving Object Area Detection in Video Image Sequence
下载PDF
导出
摘要 文章针对视频图像的特点,提出一种基于背景差分法的运动目标区域检测算法。该算法利用当前图像与背景图像作差分,并采用一阶Kalman滤波实现动态背景图像的更新,接着采用自适应阈值法进行运动区域分割,经过滤波处理即可得到运动目标区域。实验结果表明所提出的算法具有较理想的效果。 According to thecharacter of video image,a detection algorithm of moving object area based on background difference is proposed in this paper.The algorithm use the current image and background image to make the difference firstly,and then using the first-order Kalman filter to make the refresh of dynamic background image.After this,a self-adapting threshold is used in region segmentation,moving object area after filter processing can be obtained.The experiment result shows that this algorithm proposed in this paper has very good effect.
出处 《计算机与数字工程》 2012年第8期107-109,共3页 Computer & Digital Engineering
关键词 视频图像 背景差分 背景更新 自适应阈值 video image background difference background refresh self-adapting threshold
  • 相关文献

参考文献8

二级参考文献127

  • 1李彦鹏,黎湘,庄钊文.一种快速Kalman滤波算法实现及效果评估[J].电子与信息学报,2005,27(1):153-154. 被引量:9
  • 2鲍占阔,杨玉珍,陈阳舟.基于计算机视频的交通流参数检测[J].交通与计算机,2006,24(3):36-39. 被引量:2
  • 3尹小杰,朱斌,樊键.无迹Kalman滤波器及其目标跟踪应用[J].兵工自动化,2006,25(8):73-75. 被引量:5
  • 4[25]Kohle M, Merkl D, Kastner J. Clinical gait analysis by neural networks: Issues and experiences. In: Proc IEEE Symposium on Computer-Based Medical Systems, Maribor, Slovenia, 1997. 138-143
  • 5[26]Meyer D, Denzler J, Niemann H. Model based extraction of articulated objects in image sequences for gait analysis. In: Proc IEEE International Conference on Image Processing, Santa Barbara, California 1997. 78-81
  • 6[27]McKenna S et al. Tracking groups of people. Computer Vision and Image Understanding, 2000, 80(1):42-56
  • 7[28]Karmann K, Brandt A. Moving object recognition using an adaptive background memory. In: Cappellini V ed. Time-varying Image Processing and Moving Object Recognition. 2. Elsevier, Amsterdam, The Netherlands, 1990
  • 8[29]Kilger M. A shadow handler in a video-based real-time traffic monitoring system. In: Proc IEEE Workshop on Applications of Computer Vision, Palm Springs, CA, 1992.1060-1066
  • 9[30]Stauffer C, Grimson W. Adaptive background mixture models for real-time tracking. In: Proc IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins, Colorado, 1999, 2:246-252
  • 10[31]Wren C, Azarbayejani A, Darrell T, Pentland A. Pfinder: Real-time tracking of the human body. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7):780-785

共引文献362

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部