期刊文献+

应用双目摄像机进行人群密度估计 被引量:1

Application of the Binocular Camera to Crowd Density Estimation
下载PDF
导出
摘要 论文中提出了将计算机双目视觉技术应用于人群密度估计方法:首先根据目标在两个摄像平面上的视差的平均值,计算出该位置的矫正参数,然后根据目标在不同位置的矫正参数,拟合出矫正函数。以前景像素、前景边缘像素等图像特征作为人群密度估计的特征,应用矫正参数进行矫正。实验证明,相对于现有方法,该方法可以消除射影畸形的影响,大大提高特征的有效性,从而提高人群密度估计的准确性。 In this paper,a new method is proposed to estimate crowd density based on binocular vision: First,according to the average parallax of the object in the two camera plane,the correction parameters of monitoring location are calculate,then the correction function is fittied based on the result of the correction parameters of the same target objects in different locations.Take foreground pixels,foreground edge pixels of image as feature characteristics of crowd density estimation,application of correction parameters to correct.Experiments show that compared to existing methods,this method can greatly improve the effectiveness of the characteristics,thereby enhancing the accuracy of the estimation of crowd density.
作者 郭森 卢鑫
出处 《计算机与数字工程》 2012年第8期116-118,共3页 Computer & Digital Engineering
基金 广东省自然科学基金项目(编号:10151802904000013) 深圳市科技计划项目(编号:JC200903180648A) 深圳市科技计划项目(编号:JC201006020811A)资助
关键词 人群密度估计 双目视觉 射影畸形 crowd density estimation binocular camera projective deformity
  • 相关文献

参考文献11

  • 1胡波,李晓华,沈兰荪.场景监控中的人群密度估计[J].电路与系统学报,2007,12(6):19-22. 被引量:19
  • 2Prahlad Kilambi, Evan Rihnick, et al. Estimating pedestrian counts in group. Computer Vision and Image Understanding, 2008,110(1):43- 59.
  • 3Feng Chen,Enwei Zhang. A fast and roubust people counting method in video surveillance. IEEE internation Conference. Computational Intel and Security, 2007:339-343.
  • 4Antoni B Chan, Zhang-Sheng, John Liang etc al. Privacy Pre serving Crowd Monitoring: Counting People without People Models or Tracking. IEEE Conference on computer Vision and Pattern Recognition, Anchorage, 2008 : 312 -320.
  • 5Beibei Zhan, Dorothy N. Crowd analysis: a survey. Machine Vision and Applications, 2008,19 : 345- 357.
  • 6刘福美,黎宁,张燕,张可.一种基于图像处理的人群密度估计方法[J].计算机与数字工程,2011,39(5):118-122. 被引量:4
  • 7苏航,郑世宝,杨华.视频监控中人群流量和密度估计算法分析[J].电视技术,2009,33(11):100-103. 被引量:7
  • 8杨华,苏航,郑世宝.大规模群体密度估计算法[J].电视技术,2010,34(5):113-116. 被引量:5
  • 9WU Xinyu, LIANG Guoyuan, LEE Kakeung. Crowd density estimation using texture analysis and learning[C]. Proceeding of IEEE International Conference on Robotics and Biomimetics, 2006:214 219.
  • 10Yizong Cheng. Mean shift, mode seeking, and clustering. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 1995,17,17(8) :790-799.

二级参考文献59

  • 1吴瑜,郭建东,刘乃琦.一种基于HIS模型的彩色图像背景减除快速算法[J].微计算机应用,2005,26(3):306-308. 被引量:6
  • 2SCHOFER J, USHPIZ A, POLUS A. Pedestrian flow and level of service[J]. Journal of Transportation Engineering. 1983, 109(1):46-56.
  • 3DAVIES S A, JIA Hongyin, VELASTIN S A. Crowd monitoring using image processing[J]. Electronics & Communication Engineering Journal, 1995, 7(1): 37-47.
  • 4VELASTIN S A, KHOUDOUR L L, SUN B P L, et al. PRIS- MATICA: a multi-sensor surveillance system for public transport networks [EB/OL]. [2009 -05 -20].http ://d.wanfangdata.com.cn/NSTL- HY_NSTL_HY 17074105.aspx.
  • 5吴彤峰,李春新,过磊.基于ADVISOR的混合动力微型客车驱动系统结构类型选择[EB/OL].[2009-05-20].http://d.wanfangdata.com.cn/Periodical_hfgydxxb200611004.aspx.
  • 6Integrated surveillance of crowded areas for public security[EB/OL]. [2009-05-20].http ://www.iscaps.reading.ac.uk/.
  • 7INRIA, Towards active security for public places[EB/OL].[2009-05- 20]. http://www.itea2.org/public/project_leaflets/SERKET_profile_oct- 05.pdf.
  • 8CHO Siu-yeung, CHOW T W S, LEUNG Chi-tat. A neural based crowd estimation by hybrid global learning algorithm[EB/OL]. [2009-05-20]. http ://d.wanfangdata.com.cn/NSTLQK_NSTL_QK 183139 57.aspx.
  • 9CHAN A B, LIANG Z S J, VASCONCELOS N. Privacy preserving crowd monitoring: Counting people without people models or tracking [EB/OL]. [2009-05-20]. http ://ieeexplore.ieee.org/xpl/freeabs_all.j sp?arnumber=4587569.
  • 10CANNY J. A computational approach to edge detection[EB/OL]. [2009-05-20]. http ://portal.acm.org/citation.cfm?id= 11275.

共引文献29

同被引文献8

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部