期刊文献+

基于社区模型的云资源监测 被引量:3

A Community-Based Approach to Monitor Resource for Cloud Computing
下载PDF
导出
摘要 云计算是一种新兴的商业计算模型,资源性能和负载监测是其重要的研究点。分析了传统的分布式计算资源监测策略,针对云计算环境,引入社区模型设计了层次式社区监测,提出了基于敏感因子的监测方法,以解决全局监控可能会带来的数据繁冗和无效问题。仿真实验表明,模型和策略在理论上是合理的,在效率上较传统监测系统有一定的提高。 Cloud computing is an emerging computing model,and the resource performance and load monitoring is an important research point.According to cloud computing environment,this paper analyzed the monitoring methods of traditional distributed system,designed a hierarchical model introducing community model,and proposed an approach based on sensitivity factors,to solve the problems of data redundancy and invalid in global monitoring.Simulation results show that the model and method is reasonable in theory,and the efficiency has been improved on some degree.
作者 祁鑫 李振
出处 《计算机与数字工程》 2012年第8期129-132,共4页 Computer & Digital Engineering
关键词 云计算 社区 敏感因子 资源监测 cloud computing community sensitive factor resource monitoring
  • 相关文献

参考文献15

  • 1Hayes B. Cloud computing[J].COM mum ACM, 2008, 51 (7):9 11.
  • 2Milojicic D. Cloud computing: Interview with Russ Daniels and Franco travostino[J].//IEEE Internet Computing, 2008, 12 (5):7-9.
  • 3Armbrust M, Fox A, Griffith R, et al. Above the clouds: A Berkeley view of cloud computing, UCB/EECS-2009-28[R]. Electrical Engineering and Computer Sciences University of California, Berkeley, 2009.
  • 4SZALAYA S, KUNSZT P, THAKAR A, et al. Designing and mining multi-terabyte astronomy archives: The Sloan dig- ital sky survey[C]. Proceedings of the 2000 ACM SIGMOD In- ternational Conference on Management of Data. New York:ACM Press, 2000:451-462.
  • 5VAQUERO L M, RODERO-MERI NO L, CACERES J, et al. A break in the clouds: Towards a cloud definition[J].ACM SIGCOMM Computer Communication Review, 2009, 39 (1) : 50-55.
  • 6杨刚,随玉磊.面向云计算平台自适应资源监测方法[J].计算机工程与应用,2009,45(29):14-17. 被引量:20
  • 7Napster http..//www, napster, com.
  • 8Ian Clarke, Oskar Sandberg, Brandon Wiley, Freenet: A Dis tributed Anonymous Information Storage and Retrieval Sys tern, In: Proceedings of International Workshop on Design Is sues in Anonymity and Unobservability, 2000.
  • 9刘星,肖卫东,徐磊,刘建,唐九阳.基于复合拓扑的网格资源发现机制[J].计算机工程与应用,2005,41(9):132-136. 被引量:3
  • 10The Evolution of UDDI, White Paper of UDDI Organization, http://www, uddi. org/.

二级参考文献28

  • 1Hayes B.Cloud computing[J].Commun AC M, 2008,51 ( 7 ) : 9-11.
  • 2Milojicic D.Cloud computing:Interview with russ daniels and franco travostino[J].IEEE Internet Computing, 2008,12 (5) : 7-9.
  • 3Armbrust M, Fox A, Griffith R, et al.Above the clouds : A berkeley view of cloud computing,UCB/EECS-2009-28[R].Electrical Engineering and Computer Sciences University of California,Berkeley, 2009.
  • 4Massie M L,Chun B N,Culler D E.The ganglia distributed monitoring system:Design,implementation,and experience[J].Parallel Computing, 2004,30(7 ) : 817-840.
  • 5Poladian V,Arlan A,Shaw M,et al.Leveraging resource prediction for anticipatory dynamic configuration[C]//First International Conference on Self-Adaptive and Self-Organizing Systems,2007:214-223.
  • 6Domingues P,Silva L,Monitor D R.A distributed resource monitoring system[C]//Pro 11th Euromicro Conference on Parallel,Distributed and Network-based Processing, 2003 :127-133.
  • 7Bearden M,Bianchini R.Efficient and fault-tolerant distributed host monitoring using system-level diagnosis[C]//Proceedings of the IFIP/ IEEE International Conference on Distributed Platforms:Client/ Server and Beyond:DCE,CORBA,ODP and Advanced Distributed Applications, 1996:159-172.
  • 8Othman O, Balasubramanian,Schmidt D.Performance evaluation of an adaptive middleware load balancing and monitoring service[C]// Proc of the 24th IEEE Intl,2004:135-146.
  • 9Henning M.A new approach to object-oriented middleware[J].IEEE Internet Computing, 2004,8( 1 ) : 66-75.
  • 10Michi H.Choosing middleware:Why perofrmance and scalability do(and do not)matter[R].Zeroc,2009.

共引文献22

同被引文献47

  • 1任怡,张菁,陈红,吴庆波,孔金珠,戴华东,管刚.云应用引擎的资源监控和计费机制研究[J].通信学报,2012,33(S1):192-200. 被引量:3
  • 2MELL P, GRANCE T. The NIST definition of cloud computing [M]. Indianapolis: Cisco Press, 2011.
  • 3GIUSEPPE A, ALESSIO B, WALTER D, et al. Cloud monitoring : definitions, issues and future directions [ C -//IEEE International Conference on Cloud Networ- king (CloudNet' 12). Washington: IEEE Computer Society, 2012 : 63-67.
  • 4Amazon. Amazon cloud watch [EB/OL]. [2013-06-25]. http://aws, amazon, com/cloudwatch.
  • 5Hyperic. Hyperic cloud status [EB/OL]. [2013-06-25]. http://www, hyperic, com/products/cloud-status-monito- ring.
  • 6ZACH H, MARTY H. A quantitative analysis of high performance computing with Amazon's EC2 infrastructure: the death of the local cluster? [C]// Proceedings of 10th IEEE/ACM International Conference on Grid Computing. Washington: IEEE Computer Society, 2009: 26-33.
  • 7VENKATARAMAN V, SHAH A, ZHANG Y. Network-based measurement on cloud computing services[EB/ OL]. [2013-07-05] http://citeseerx, ist. psu. edu/ viewdoc/download? doi = 10. 1. 1. 188. 1013&rep = repl &type = pdf.
  • 8NIST. Measurement science for cloud computing [EB/ OL]. [2013-07-05]. http://researcher, ibm. com/view_ project, php? id = 2276.
  • 9Rahul Potharaju, MIAO Rui, Phillipa Gill. NetWiser [EB/OL]. [2013-07-08]. http.//research, microsoft. com/en-us/um/people/navendu/netwiser.
  • 10CHAVES S A, URIARTE R B, WESTPHALL C B. Toward an architecture for monitoring private clouds [J]. IEEE Communications Magazine, 2011 , 49 (12) : 130-137.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部