期刊文献+

盲信号处理在机电声学监测与诊断中的应用

Application of Blind Signal Processing in the Electromechanical Acoustic Monitoring and Diagnosis
下载PDF
导出
摘要 机械噪声信号和振动信号一样,蕴含了机械设备运行状态的重要信息,当设备状态发生改变时,其声学特性同样会发生改变。但是,待识别的目标信号和其它设备的信号以及噪声信号混杂在一起,一般很难直接从测量的声信号中获得有用的信息。因此,排除或抑制干扰信号或背景噪声,准确地从低信噪比的混合信号中提取出待识别的目标信号,对声学监测与诊断方法十分关键,而盲信号处理技术为机械声学信号的分离提供了一个有力的解决手段。该文对盲信号技术在机械装置声学监测与诊断中的研究现状进行了概述,为盲信号进一步应用于机械中的声学分析打下基础。 Acoustical signals,similar to mechanical vibration signals,indicate a lot about the mechanical system,because the acoustical features will change along with the working condition of equipments.But it is too difficult to extract useful information from measured mixtures directly,since the target signal is usually corrupted by other equipments' signals or noise.Consequently,in acoustic-based diagnosis,it is crucial to remove or restrain interference signals or background noise,and accurately extract the target signal from the mixed signals of low signal-noise ratio.While blind signal processing(BSP) technology becomes a powerful tool in the field of separation of mechanical acoustical signals.This paper gave a general explanation of the use of BSP in detection and diagnosis of faults in rotating machinery,and can be the foundation for BSP to apply to the analysis of machinery noise.
出处 《舰船电子工程》 2012年第8期120-124,共5页 Ship Electronic Engineering
关键词 机械噪声 盲信号 检测与诊断 信号分离 machinery noise BSP detection and diagnosis signal separation
  • 相关文献

参考文献11

  • 1Alexander Ypma, Amir Leshem, Robert P. W. Duin. Blind separation of rotating machine bilinear forms and convolutive mixtures[J]. Neurocomputing 2002,49: 349-368.
  • 2蔡晓平,陈进,吴军彪,陈少林.等变自适应算法在声学特征信号分离中的应用[J].振动与冲击,2004,23(1):110-112. 被引量:6
  • 3J. B. Wu, J. Chen, Z. M. Zhong, etal. Applieation of blind sourees aration method in mechanical sound signal analysis[C]//2002ASME International Mechanical Engineering Congress and Exposition, 2002 : 785-791.
  • 4张西宁,穆安乐,温广瑞.一种新的盲声源信号分离方法及其应用[J].西安交通大学学报,2005,39(1):6-8. 被引量:6
  • 5Li Jiawen, Li Congxin. A Two-step Adaptive Blind Source Separation for Machine Sound [C]//Proeeedings of the 6th World Congress on Intelligent Control and Automation, Dalian, China, June 21-23, 2006: 5424-5427.
  • 6W. Li, F. Gu, A. D. Ball, et. al. A Study of the Noise from Diesel Engines Using the Independent Component Analysis[J]. Mechical Systems and Signal Processing, 2001, 15 (6): 1165-1184.
  • 7管卫华,林用满.盲分离技术识别发动机的机械和燃烧噪声源[J].车用发动机,2006(5):48-50. 被引量:3
  • 8B. Rivet, V. Vigneron, A. P. Ionescu, et. al. Wavelet denoising for blind source separation in noisy mixtures[J]. Lecture Notes in Computer Science,2004(3) :263-270.
  • 9W. F. Xue, J. Chen, J. Q. Li, et. al. Acoustical feature extraction of rotating machinery with combined wave superposition and blind source separation[C]. Proc. IMeehE Vol. Part C: J. Mechanical Engineering Science, 2006,22:1423-1431.
  • 10钟振茂,陈进,钟平.盲源分离技术用于机械故障诊断的研究初探[J].机械科学与技术,2002,21(2):282-284. 被引量:14

二级参考文献29

  • 1焦卫东,杨世锡,吴昭同.基于盲源分离的旋转机械干扰消除技术研究[J].仪器仪表学报,2004,25(3):368-371. 被引量:16
  • 2吕兴才,黄震.柴油机噪声源的声强识别方法[J].农业机械学报,2004,35(5):51-54. 被引量:15
  • 3杨金才,郝志勇,贾维新.内燃机传动噪声识别的小波分析方法[J].内燃机工程,2005,26(5):74-76. 被引量:7
  • 4Comon P. Independent component analysis: a new concept [J]. Signal Processing, 1994,36(3):287-314.
  • 5Bell A J. An information maximization approach to blind separation and blind deconvolution [J]. Neural Computation, 1995,7(6):1 129-1 159.
  • 6Hyvarinen A, Oja E. Independent component analysis: algorithms and applications [J]. Neural Networks, 2000,13(4-5) : 411-430.
  • 7Bell A J. An information maximization approach to blind separation and blind deconvolution [J]. Neural Computation, 1995,7(6):1129-1159.
  • 8Schmidt R O.Multiple emitter location and signal parameter estimation[J].IEEE Trans.Antennas Propagation, 1986, AP-34:276~280
  • 9Oh S K, Un C K.A sequential estimation approach for performance improvement of eigenstructure-based method in array processing[J].IEEE Trans.Signal Processing, 1993, 41:457~463
  • 10Stoica P.Improved sequential MUSIC[J].IEEE Trans.Aerosp.Electron.Syst., 1995:1230~1239

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部