期刊文献+

磷修饰金纳米粒子对葡萄糖氧化的电催化性能 被引量:2

Synthesis of phosphorus modified gold nanoparticles and their electrocatalytic activity for glucose oxidation
原文传递
导出
摘要 采用白磷还原法制备了磷修饰的金纳米粒子(Au-PNPs),Au-PNPs的粒径能够通过改变氯金酸与白磷的投料摩尔比进行有效调控.采用X-射线粉末衍射光谱(XRD)、傅里叶变换红外光谱(FT-IR)和透射电子显微镜(TEM)和电化学测试来表征Au-PNPs的形貌、结构和表面组成.循环伏安测试表明,在pH7.4的磷酸缓冲溶液中,Au-PNPs修饰电极对葡萄糖电化学氧化有良好的催化性能.通过与柠檬酸钠还原法制得的金纳米粒子(Au-CitNPs)的电化学性质比较,发现Au-PNPs对葡萄糖的电催化氧化具有优良的稳定性.基于此Au-PNPs修饰电极的葡萄糖无酶电化学传感器对于葡萄糖检测具有宽的线性检测范围(9.0×10-6~1.8×10-2mol/L)和低的检出限(5.0×10-6mol/L). A simple one-step method is used to synthesize phosphorus modified gold nanoparticles (Au-P NPs) by using white phosphorus as reducing agent. The particle size of Au-P NPs can be easily controlled by varying the molar ratio of HAuCl4 to P4. The methodology, structure and surface composition of as-papered Au-P NPs are detailedly investigated by X-ray powder diffraction (XRD), Fourier transform infrared (FT-IR) and transmission electron microscopy (TEM) measurements. Cyclic voltammetry measurements are applied to investigate the electrocatalytic performance of Au-P NPs for glucose oxidation. The electrochemical measurements show that Au-P NPs have higher electrocatalytic performance for glucose oxidation in pH 7.4 phosphate buffer solution (PBS) than the other Au NPs. Furthermore, the Au-P NPs modified electrode exhibits remarkably excellent electrochemical stability for electrooxidation of glucose. Thus, a sensitive enzyme-flee electrochemical sensor with wide linear range (9.0×10^-6 -1.8×10^-2 mol/L) and low detection limit (5.0× 10^-6 mol/L) can be easily developed for the detection of glucose in pH 7.4 phosphate buffer solution.
出处 《科学通报》 EI CAS CSCD 北大核心 2012年第23期2177-2183,共7页 Chinese Science Bulletin
基金 国家自然科学基金(21073094,21005039) 国家自然科学基金-云南联合基金(U1137602) 江苏高校优势学科建设工程 江苏省高校自然科学基金(10KJB150007)资助
关键词 AU纳米粒子 葡萄糖 电催化氧化 无酶传感器 电极 Au nanoparticles, glucose, electrocatalytic oxidation, enzyme-free sensor, electrode
  • 相关文献

参考文献33

  • 1Freguia S, Rabaey K, Yuan Z, et al. Syntrophic processes drive the conversion of glucose in microbial fuel cell anodes. Environ Sci Technol, 2008, 42:7937-7943.
  • 2Guerin S, Hayden B E, Pletcher D, et al. A combinatorial approach to the study of particle size eEffects on supported electrocatalysts: Oxygen reduction on gold. J Comb Chem, 2006, 8:679-686.
  • 3Kerzenmacher S, Ducree J, Zengerle R, et al. Energy harvesting by implantable abiotically catalyzed glucose fuel cells. J Power Sources, 2008, 182:1-17.
  • 4Yehezkeli O, Tel-Vered R, Raichlin S, et al. Nano-engineered flavin-dependent glucose dehydrogenase/gold nanoparticle-modified electrodes forglucose sensing and biofuel cell applications. ACS Nano, 2011, 5:2385-2391.
  • 5Cheng T M, Huang T K, Lin H K, et al. (110)-Exposed gold manocoral electrode as low onset potential selective glucose sensor. ACS Appl Mater Int, 2010, 2:2773-2780.
  • 6Zhou Y G, Yang S, Qian Q Y, et al. Gold nanoparticles integrated in a nanotube array for electrochemical detection of glucose. Electrochem Commun, 2009, 11:216-219.
  • 7Cho S, Kang C. Nonenzymatic glucose detection with good selectivity against ascorbic acid on a highly porous gold electrode subjected to amalgamation treatment. Electroanalysis, 2007, 19:2315-2320.
  • 8Jena B K, Raj C R. Enzyme-free amperometric sensing of glucose by using gold nanoparticles. Chem Eur J, 2006, 12:2702-2708.
  • 9Li F, Wang Z, Shan C, et al. Preparation of gold nanoparticles/functionalized multiwalled carbon nanotube nanocomposites and its glucose biosensing application. Biosens Bioelectron, 2009, 24:1765-1770.
  • 10Liu Y, Feng X, Shen J, et al. Fabrication of a novel glucose biosensor based on a highly electroactive polystyrene/polyaniline/Au nanocomposite. J Phvs Chem B, 2008, 112:9237-9242.

二级参考文献60

  • 1冷鹏,郑彦,李其云.纳米金-生物酶膜在葡萄糖生物传感器上的应用[J].化学分析计量,2005,14(5):46-48. 被引量:4
  • 2王存嫦,阳明辉,鲁亚霜,吾国强,沈国励,俞汝勤.基于碳纳米管和铁氰酸镍纳米颗粒协同作用的葡萄糖生物传感器[J].化学学报,2006,64(13):1355-1360. 被引量:15
  • 3李艳,李静.葡萄糖氧化酶及其在酒中的应用[J].酿酒,2006,33(5):63-65. 被引量:7
  • 4Hutter E, Pileni M P. Detection of DNA hydridization by gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy. J Phys Chem B, 2003, 107:6497-6499.
  • 5Mirkin C A, Letsinger R L, Mucic R C, et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature, 1996, 382:607-609.
  • 6Liu J, Lu Y. Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb^2+ detection. J Am Chem Soc, 2004, 126:12298-12305.
  • 7Liu J, Mazumdar D, Lu Y. A simple and sensitive "dipstick" test in serum based on lateral flow separation of aptamer-linked nanostructures. Angew Chem Int Ed, 2006, 45:7955-7959.
  • 8Huang X H, El-Sayed I H, Qian Wei, et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc, 2006, 128:2115-2120.
  • 9Nusz G J, Marinakos S M, Curry A C, et al. Label-free plasmonic detection of biomolecular binding by a single gold nanorod. Anal Chem, 2008, 80:984-989.
  • 10Parab H J, Chen H M, Lai T C, et al. Biosensing, cytotoxicity, and cellular uptake studies of surface-modified gold nanorods. J Phys Chem C, 2009, 113:7574-7578.

共引文献25

同被引文献17

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部