期刊文献+

解周期初值问题的三角拟合显式三步方法

Trigonometrically Fitted Explicit Three Steps Method for Periodic Initial Value Problems
下载PDF
导出
摘要 以一类解二阶微分方程的显式三步方法为基础,构造了一个三角拟合显式三步方法,给出了新方法的局部截断误差,对新方法做出了稳定性分析,数值实验的结果表明新方法在求解周期性初值问题的微分方程时具有明显高效性. A trigonometrically fitted explicit three-step method is developed based on an explicit three-step method for periodic initial value problems. Stability of the new derived method is analyzed and the numerical illustrations show that the new method is more efficient than some well-known methods.
作者 刘石威
出处 《常熟理工学院学报》 2012年第4期24-27,共4页 Journal of Changshu Institute of Technology
关键词 三角拟合 三步方法 周期性初值问题 trigonometrically fitted explicit three-step method periodic initial value problems
  • 相关文献

参考文献11

  • 1Dormann J, Fiorani D, Tronc E, et al. Advances in chemical physics[M]. New York: John Wiley & Sons, 1997: 98.
  • 2Landau L, Lifshitz F. Quantum mechanics[M]. New York: Pergamon, 1965.
  • 3Lyche T. Chebyshevian multistep methods for ordinary differential equations[J]. Numerische Mathematik, 1972, 19: 65-75.
  • 4Raptis A, Allison A. Exponential-fitting methods for the numerical solution of the Schrodinger equation[J]. Computer Physics Com- munications, 1978, 14: 1-5.
  • 5Anastassi Z A, Simos T E. Trigonometrically fitted fifth-order runge-kutta methods for the numerical solution of the schrtMinger equation[J]. Mathematical and Computer Modelling, 2005, 42 : 877-886.
  • 6Franco J. An embedded pair of exponentially fitted explicit Runge - Kutta methods[J]. Journal of Computational and Applied Mathe- matics, 2002, 149: 407-414.
  • 7Vanden Berghe G, De Meyer H, Van Daele M, et al. Exponentially fitted Runge - Kutta methods[J]. Journal of Computational and Applied Mathematics, 2000, 125 : 107-115.
  • 8Hairer E, NCrsett S P, Wanner G. Solving ordinary differential equations : Nonstiff problems[M]. Berlin: Springer Verlag, 1993.
  • 9Van de Vyver H. Stability and phase-lag analysis of explicit Runge - Kutta methods with variable coefficients for oscillatory prob- lems[J]. Computer Physics Communications, 2005, 173 : 115-130.
  • 10Dekker K. Stability of linear multistep methods on the imaginary axis[J]. BIT Numerical Mathematics, 1981, 21 : 66-79.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部