期刊文献+

Almost pure TM or TE component far field in vector cosine-Gaussian beams

Almost pure TM or TE component far field in vector cosine-Gaussian beams
下载PDF
导出
摘要 The vectorial structure of cosine-Gaussian beams (cGBs) is investigated in the far field regime based on the vector plane wave spectrum and the method of stationary phase. The energy flux densities of TE or TM term and the ratio of the energy flux of TE or TM term in the whole beam are demonstrated. It is found that the spot configurations of the energy flux densities associated with the TE and TM terms depend on the polarization angle and the beam parameter of the incident cGB. And the far field may be entirely transverse magnetic or transverse electric under appropriate polarization angle and beam parameter. The vectorial structure of cosine-Gaussian beams (cGBs) is investigated in the far field regime based on the vector plane wave spectrum and the method of stationary phase. The energy flux densities of TE or TM term and the ratio of the energy flux of TE or TM term in the whole beam are demonstrated. It is found that the spot configurations of the energy flux densities associated with the TE and TM terms depend on the polarization angle and the beam parameter of the incident cGB. And the far field may be entirely transverse magnetic or transverse electric under appropriate polarization angle and beam parameter.
出处 《Journal of Central South University》 SCIE EI CAS 2012年第8期2167-2172,共6页 中南大学学报(英文版)
关键词 cosine-Gaussian beam vectorial structure polarization TM component TE component 余弦高斯光束 TE TM 矢量 远场 分量 纯质 能量通量
  • 相关文献

参考文献20

  • 1LAX M, LOUISELL W H, MCKNIGHT W B. From Maxwell to paraxial optics [J]. Phys RevA, 1975, 11(3): 1365-1370.
  • 2DAVIS L W. Theory of electromagnetic beams [J]. Phys Rev A, 1979, 19(2): 1177-1179.
  • 3CARTER W H. Electromagnetic field of a Gaussian beam with an elliptical cross section [J]. J Opt Soc Am, 1972, 62(10): 1195-1201.
  • 4HERRERO R M, MEJIAS P M, BOSCH S, CARNICER A. Vectorial structure of nonparaxial electromagnetic beams [J]. J Opt Soc Am A, 2001, 18(7): 1678-1670.
  • 5MARATHAY A S, MCCALMONT J F. Vector diffraction theory for electromagnetic waves [J]. J Opt Soc Am A, 2001, 18(10): 2585- 2593.
  • 6CHEN C G, KONKOLA P T, FERRERA J, HEILMANN R K, SCHATTENBURG M L. Analyses of vector Gaussian beam propagation and the validity ofparaxial and spherical approximations [J]. J Opt Soc Am A, 2002, 19(2): 404-412.
  • 7GUO H M, CHEN J B, ZHUANG S L. Vector plane wave spectrum of an arbitrary polarized electromagnetic wave [J]. Opt Express, 2006, 14(6): 2095-2100.
  • 8HERRERO R M, MEJIAS P M. Propagation of light fields with radial or azimuthal polarization distribution at a transverse plane [J]. Opt Express, 2008, 16(12): 9021-9033.
  • 9HERRERO R M, MEJIAS P M, BOSCH S. On the vectorial structure of non-paraxial radially polarized light fields [J]. Opt Commun, 2008, 281(11): 3046-3050.
  • 10WU G H, LOU Q H, ZHOU J. Analytical vectorial structure of hollow Gaussian beams in the far field [J]. Opt Express, 2008, 16(9): 6417-6424.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部