期刊文献+

高活性碳纳米管阴极组合件的研制(英文)

Building robust cathode catalyst to improve performance of proton exchange membrane fuel cells
下载PDF
导出
摘要 应用两亲软化学法,将纳米铂有效地分散在多层碳纳米管阵列(ACNT)表面,使其得以修饰,形成了高活性的阴极催化材料,用于制备结构膜阴极组合件(MEA)。对MEA进行的形态学和电化学测试,证明可以大大改善质子交换膜燃料电池(PEMFC)的纳米结构和电化学性能。该种阴极催化材料除了表面均匀及高活性之外,还表现出比目前设计出的PEMFC高出约6倍的输出功率,在一定电位下的氧气中可以达到900 mW·cm-2,而贵金属铂搭载量则显著降低至0.14~0.19 mg·cm-2。实验结果表明,由于碳纳米管阵列的厌水性保证了电极性能的稳定性,从而为提高PEMFC电池的长期稳定性及降低成本提供了一条新的解决思路,具有一定的学术研究价值和经济应用价值。 A robust cathode catalyst composed of multiwalled carbon nanotube(ACNT) arrays decorated with platinum(Pt) were fabricated. This cathode was then used for a structured membrane electrode assembly (MEA) to evaluate the proton exchange membrane fuel cells (PEMFCs) performance. The MEA was evaluated both morphologically and electrochemically. Aside from being uniform and robust, the catalyst showed six-fold higher power density( approximately 900 mW· cm-2 in 02 at fixed potential) compared to existing design for PEMFC devices. Significantly, Pt loading has been decreased to 0. 14 - 0. 19 2 mg · cm 2.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2012年第4期489-497,共9页 Journal of Natural Science of Heilongjiang University
基金 The National Science Foundation(NSF)Centers of Research Excellence in Science and Technology(NSF CREST,HRD-0734850) MRI acquisition(CBET-0821370)at the Texas A&M University-Kingsville
关键词 碳纳米管阵列 纳米铂 质子交换膜燃料电池 纳米结构表征 电化学性能 aligned carbon nanotubes platinum nanoparticles proton exchange membrane fuel cells nanostructural characterization electrochemical performance
  • 相关文献

参考文献28

  • 1ANGELOS J P, PUIGNOU M, ANDREAE M M, et al. Detailed chemical kinetic simulations of HCCI engine transients[ J]. Int J Eng Res,2008, 9 : 149 - 164.
  • 2ARICO A S, BRUCE P, SCROSATI B, et al. Nanostructured materials for advanced energy conversion and storage devices [ J ]. Nature Mater, 2005,4 : 366 - 377.
  • 3EHTA V, COOPER J S. Review and analysis of PEM fuel cell design and manufacturing[ J]. J Power Sources,2003,114:32 -53.
  • 4WEE J H. Applications of proton exchange membrane fuel cell systems[ J]. Renew Sustain Energy Rev, 2007,11 : 1720 -1738.
  • 5ANTUNES R A, D E OLIVEIRA M C L, ETT G, et al. Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells: a review of the main challenges to improve electrical performance[ J]. J Power Sources, 2011,196:2945 -2961.
  • 6CHE G, LAKSHMI B B, FISHER E R, et al. Carbon nanotubule membranes for electrochemical energy storage and production [ J ]. Nature, 1998, 393:346-349.
  • 7RUTHERGLEN C, BURKE P. Nanoelectromagnetics : circuit and electromagnetic properties of carbon nanotubes[ J]. Small, 2009,5 : 884 - 906.
  • 8LIU C, WANG C C, KEI C C, et al. Atomic layer deposition of platinum nanopartieles on carbon nanotubes for application in proton-exchange membrane fuel cells[J]. Small, 2009,5:1535 -1538.
  • 9WEN Z, WANG Q, LI J. Template synthesis of aligned carbon nanotube arrays using glucose as a carbon source : Pt decoration of inner and outer nanotube surfaces for fuel-cell catalysts [ J ]. Adv Funct Mater, 2008,18 : 959 - 964.
  • 10SHAO Y, YIN G, WANG Z, et al, Protein exchange membrane fuel cell from low temperature to high temperature : material challenges [ J ]. J Power Sources, 2007, 167 : 235 - 242.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部