期刊文献+

含油纳米制冷剂沸腾中纳米颗粒相间迁移机制

Migration Mechanism of Nanoparticles From Liquid Phase to Vapor Phase in the Boiling of Nanorefrigerant-Oil Mixture
原文传递
导出
摘要 含油纳米制冷剂沸腾中纳米颗粒相间迁移机制,是评估纳米制冷剂沸腾传热效果和制冷系统中纳米颗粒循环能力的基础。本文基于颗粒捕集理论和气浮理论,提出了各因素对纳米颗粒相间迁移的影响机制;即纳米颗粒迁移率随其密度或粒径的减小而增大,制冷剂动力学黏度越小、密度越大,其完全蒸发时纳米颗粒迁移率越大,纳米颗粒迁移率随润滑油浓度的增大而减小,随热流密度的增大而减小,随初始液位高度的增加而增大。同时通过实验验证了理论分析。 Migration mechanism of nanoparticles from liquid phase to vapor phase in the boiling of nanorefrigerant-oil mixture is fundamental to the evaluation of nanorefrigerant boiling heat transfer and nanoparticles circulation in refrigeration systems. Based on the particles trapping theory and flotation theory, the influence mechanism of different factors on the migration of nanoparticles is proposed. The results showed that the migration ratio of nanopaticles increases with the decrease of the density or size of nanoparticles. When the refrigerant is completely evaporated, the smaller dynamic viscosity or larger density of refrigerant causes the larger migration ratio of nanoparticles. The migration ratio of nanoparticles decreases with the increase of lubricating oil concentration or heat flux, while increases with the increase of initial liquid-level height. The accuracy of the theoretical analysis results is verified by the experimental results.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2012年第9期1487-1491,共5页 Journal of Engineering Thermophysics
基金 国家自然科学基金资助项目(No.50976065)
关键词 纳米颗粒 制冷剂 迁移 机制 nanoparticles refrigerant migration mechanism
  • 相关文献

参考文献8

  • 1Bi S S, Shi L, Zhang L L. Application of Nanoparticles in Domestic Refrigerators [J]. Applied Thermal Engineering, 2008, 28:1834 1843.
  • 2Trisaksri V, Wongwises S. Nucleate Pool Boiling Heat Transfer of TiO2-R141b Nanofluids [J]. International Journal of Heat and Mass Transfer, 2009, 52(5/6): 1582- 1588.
  • 3PENG H, DINGO L, HUH T, et al. Nucleate Pool Boiling Heat Transfer Characteristics of Re-gerant/Oil Mixture With Diamond Nanoparticles [J]. International Journal of Refrigeration, 2010, 33(2): 347-358.
  • 4DING G L, PENG H, JIANG W T, et al. The Migration Characteristics of Nanoparticles in the Pool Boiling Pro- cess of Nanorefrigerant and Nanorefrigerant-Oil Mixture [J]. International Journal of Refrigeration, 2009, 32(1): 114 -123.
  • 5丁国良,彭浩,胡海涛.含油纳米制冷剂沸腾中纳米颗粒相间迁移特性预测模型[J].工程热物理学报,2011,32(4):561-564. 被引量:2
  • 6Prasher R, Bhattacharya P, Phelan P E. Brownian- Motion-Based Convective-Conductive Model for the Ef- fective Thermal Conductivity of Nanofluids [J]. Journal of Heat Transfer, 2006, 128:588- 595.
  • 7Edzwald J K, Malley J P, Yu C. A Conceptual Model for Dissolved Air Flotation in Water Treatment [J]. Water Supply, 1990, 8:141- 150.
  • 8Nguyen A V, Ralston J, Schulze H J. On Modelling of Bubble-Particle Attachment Probability in Flotation [J]. Int J Miner Process, 1998, 53:225-249.

二级参考文献7

  • 1Bi S S, Shi L, Zhang L L. Application of Nanoparticles in Domestic Refrigerators [J]. Applied Thermal Engineering, 2008, 28:1834-1843.
  • 2DING G L, PENG H, JIANG W T, et al. The Migration Characteristics of Nanoparticles in the Pool Boiling Process of Nanorefrigerant and Nanorefrigerant-Oil Mixture [J]. International Journal of Refrigeration, 2009, 32(1): 114-123.
  • 3Nguyen A V, Ralston J, Schulze H J. On Modelling of Bubble-Particle Attachment Probability in Flotation [J]. Int. J. Miner Process, 1998, 53:225-249.
  • 4Cole R, Rosenhow W. Correlation of Bubble Departure Diameters for Boiling of Saturated Liquids [J]. Chem. Eng. Prog. Symp. Ser., 1969, 65(92): 211-213.
  • 5Malenkov I G. Detachment Frequency as a Function of Size for Vapor Bubbles [J]. Journal of Engineering Physics and Thermophysics , 1971, 20(6): 704-708.
  • 6Edzwald J K, Malley J P, Yu C. A Conceptual Model for Dissolved Air Flotation in Water Treatment [J]. Water Supply, 1990, 8:141-150.
  • 7Fung M S, Hamdullahpr F. A Gas and Particle Flow Model in the Freeboard of a Fluidized Bed Based on Bubble Coalescence [J]. Powd. Tech., 1993(74): 121-133.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部