几何随机变量的卷积
The Convolution of the Geometric Random Variables
摘要
使用组合数学与概率论的方法研究了几何随机变量的卷积.
With the methods of combinatorial and probability theory, the convolution of the geometric random variables is investigated in this paper.
出处
《数学的实践与认识》
CSCD
北大核心
2012年第16期196-198,共3页
Mathematics in Practice and Theory
关键词
卷积
几何分布
发生函数
convolution
Geometric distribution
Generating function
参考文献7
-
1Ferguson T s. On characterizing distributions by properties of order statistics[J]. Sankhya A, 1967, 29:165-278.
-
2Ferguson s.A characterization of the geometric distribution[J]. Amer Math Monthly, 1972: 256-160.
-
3Arnold B C. Two characterizations of geometric distribution[J]. J Appl Prob, 1980, 17: 570-573.
-
4刘常彪.记录时间的联合分布[J].数学的实践与认识,2009,39(11):164-167. 被引量:2
-
5刘常彪.k阶记录时间的联合分布[J].数学的实践与认识,2010,40(1):156-159. 被引量:1
-
6Edward Furman. On theconvolution of the negative binomial random variables[J]. Statistics Prob- ability Lettters, 2007, 77: 169-172.
-
7Comtet,Numbers de stirling generaux et fonctions[J]. Symetriques C R, 1972, 275: 747-750.
二级参考文献17
-
1Chandler K N. The distribution and frequency of record values[J]. J Roy Statist Soc Ser B, 1952,14:220-228.
-
2Nevzorov V B. Records: Mathematical theory, Translation of Mathematical Monagraphs [M]. American Mathematical Socicety, Providence, Rhode Island,2001.
-
3Udo Kamps. Recurrence relations for moments of record values[J]. Journal of Statistical Planning AndInference, 1995,45:225-234.
-
4Monika Klimczak. Prediction of k-th records[J]. Statistics Probability Letters, 2006,76 : 117-127.
-
5Stepanov A V, Balakrishnan N. Exact distribution and Fisher information of weak record values[J]. Statistics Probability Letters, 2003,64 : 69-81.
-
6Lopez-Blazquez F, Salamanca Mino B. Bounds for the expected value of records from discree distributions[J]. Journal of Statistical Planning and Inference, 2006,136 : 467-474.
-
7Herbert S Will.发生函数论[M].王天明(译).清华大学出版社,2003.
-
8Louis Comtet(著),谭明术等(译).高等组合学[M].大连理工大学出版社,1989.
-
9Chandler K N. The distribution and frequency of record values[J]. J Roy Statist Soc Ser B, 1952,14:220-228.
-
10Dziubdziela W, Kopocifiski B. Limiting properties of the κ-th record values[J]. Appl Math, 1976,15 :187-190.
-
1及万会.方幂和[J].重庆师范学院学报(自然科学版),1994,11(1):48-53. 被引量:2
-
2刘常彪.记录值的联合分布[J].数学的实践与认识,2012,24(3):131-134.
-
3及万会.r阶Fibonacci数列[J].钦州师专钦州教院学报,1994,8(3):59-62.
-
4及万会.r阶Fibonacci数列[J].高师理科学刊,2005,25(1):13-16. 被引量:6
-
5及万会.一类Lucas数方幂和[J].西南民族大学学报(自然科学版),2005,31(3):330-334. 被引量:1
-
6及万会.矩阵方幂之和[J].抚州师专学报,1999,18(1):19-23.
-
7李志荣.Dirichlet级数在偶数点计算公式的残数证明[J].大学数学,2007,23(4):96-98.
-
8及万会.下足标为负整数的Lucas数方幂和[J].天中学刊,2005,20(2):1-4. 被引量:1
-
9及万会.关于Lucas数方幂和[J].纺织高校基础科学学报,2003,16(3):212-215. 被引量:10
-
10赵熙强,张玉峰,梁爱武.构造常态Riordan阵的一种方法[J].洛阳大学学报,2001,16(4):4-5.