期刊文献+

基于CUDA的细分曲面阴影体算法 被引量:4

CUDA based shadow volume algorithm for subdivision surfaces
下载PDF
导出
摘要 为了在虚拟现实、电脑游戏等图形应用中更快速生成和实时绘制细分曲面的阴影,提出采用CUDA架构的GPU阴影体生成算法.该算法采用基于CUDA的曲面细分算法,通过CUDA共享内存结构使表面细分过程更加高效.采用基于CUDA的阴影体算法产生阴影轮廓线以及拉伸出阴影体.通过基于CUDA的流式缩减算法对阴影体数组进行压缩.通过优化CUDA和OpenGL的互操作,将绘制过程从以往算法的3步减少为2步.该算法在具有CUDA硬件的标准PC上进行测试.实验结果表明,与之前的GPU的算法相比,该算法可以生成更复杂细分曲面的阴影体,阴影体数组占用显存空间降低到2%以下,并可获得高达4倍的绘制速度提升. A new GPU based shadow volume generation algorithm based on CUDA structure was proposed for fast generation and real-time rendering of shadow of subdivision surfaces in computer games and virtual reality applications. The algorithm introduces CUDA-based surface subdivision algorithm. Generation of surface subdivisions can run faster by using shared memory structure. CUDA-based shadow volume algo- rithm was introduced to generate the shadow silhouette line and extrude the shadow volume. CUDA-based stream reduction algorithm was introduced to reduce the shadow volume array. An optimized interopera- tion between CUDA and OPENGL was introduced to simplify the rendering step of the algorithm from three steps to two steps. Implemented on a standard PC with CUDA hardware, experiments show that the algorithm can generate the shadow volume of more complex subdivision surfaces compared with former GPU-based ones. The algorithm needs smaller video memory for the shadow volume array to less than 2%, and the rendering performance can gain acceleration up to more than four times.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2012年第7期1301-1306,共6页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(61170140) 浙江省自然科学基金资助项目(Y1100069 Y1100018)
关键词 CUDA 细分曲面 阴影体生成 流式缩减 CUDA subdivision surface shadow volume generation stream reduction
  • 相关文献

参考文献16

  • 1唐敏,童若锋,董金祥.基于GPU的曲面自适应细分[J].浙江大学学报(工学版),2008,42(7):1145-1149. 被引量:3
  • 2Graphics processing units based adaptive subdivision [J]. Journal of Zhejiang University: Engineering Science,2008,42(7) : 1145 - 1149.
  • 3SHIUE L J,JONES I,PETERS J. A real-time GPU subdivision kernel [J]. ACM Transactions on Graphics(TOG), 2005,24(3): 1010-1015.
  • 4SCHWARZ M, STAMMINGER M. Fast GPU-based adaptive tessellation with CUDA [J]. Computer Graphics Forum, 2009,28(2) : 365 - 374.
  • 5WILLIAMS L. Casting curved shadows on curved sur-faces [J]. ACM SIGGRAPH Computer Graphics, 1978, 12(3): 270 -274.
  • 6CROW F C. Shadow algorithms for computer graphics [J ]. ACM SIGGRAPH Computer Graphics, 1977, 11(2): 242 - 248.
  • 7EVERITT C, KILGARD M. Practical and robust stencil shadow volumes for hardware accelerated rendering [R]. Austin: NVIDIA Corporation, 2002.
  • 8BRABEC S, SEIDEL H. Shadow volumes on programmable graphics hardware [J]. Computer Graphics Forum, 2003, 22(3): 433 -440.
  • 9TANG M,DONG J X. Geometry image-based shadow volume algorithm for subdivision surfaces [C] // Computer Graphics International. Petropolis, Brazil: [s. n. ],2007: 21-28.
  • 10TANG M, DONG J X,CHOU S C. Real-time shadow volumes for subdivision surface based models [C] // Computer Graphics International. Hangzhou: [s. n.], 2006: 538 - 545.

二级参考文献13

  • 1黄通浪,唐敏,董金祥.一种快速精确的连续碰撞检测算法[J].浙江大学学报(工学版),2006,40(6):1051-1055. 被引量:17
  • 2BISCHOFF S, KOBBELT L P, SEIDEL H P. Towards hardware implementation of loop subdivision [C]//Proceedings of SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware 2000. Interlaken: [s. n. ], 2000: 41 - 50.
  • 3STAM J. Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values [C] // Proceedings of SIGGRAPH 1998. Orlando: ACM, 1998: 395-404.
  • 4STAM J. Evaluation of loop subdivision surfaces [C]//Course Notes of SIGGRAPH 1998. [S. l. ] : [s. n. ], 1998.
  • 5ZORIN D, KRISTJANSSON D. Evaluation of piecewise smooth subdivision surfaces [J]. The Visual Computer, 2002, 18(5/6) :299 - 315.
  • 6PULLI K, SEGAL M. Fast rendering of subdivision surfaces [C] // Proceedings of the EUROGRAPHICS Workshop on Rendering Techniques 1996. Proto: Springer-Verlag, 1996:61 - 70.
  • 7BOLZ J, SCHRODER P. Rapid evaluation of Catmull- Clark subdivision Surfaces [C]// Proceedings of the Web3D 2002 Symposium. Tempe: ACM, 2002:11 - 18.
  • 8BOLZ J, SCHRODER P. Evaluation of subdivision surfaces on programmable graphics hardware [EB/OL]. [-2003-01-01]. http://www. multires. caltech. edu/ pubs/GPUSubD, pdf.
  • 9BUNNELL M. GPU gems 2: programming techniques for high-performance graphics and general-purpose computation [M]. [S.l. ]: Addison-Wesley Professional, 2005.
  • 10SHIUE L J, PETERS J. A realtime GPU subdivision kernel [C] //Proceedings of SIGGRPAH 2005. Los Angeles: ACM, 2005: 1010 - 1015.

共引文献2

同被引文献34

  • 1吴恩华.图形处理器用于通用计算的技术、现状及其挑战[J].软件学报,2004,15(10):1493-1504. 被引量:141
  • 2李胜亮,管莉,张凌,潘伟,郝重阳.基于阴影映射的实时软阴影算法及实现[J].弹箭与制导学报,2007,27(1):214-217. 被引量:3
  • 3吕广宪,潘懋,吴焕萍,丛威青,吴自兴.面向真三维地学建模的海量虚拟八叉树模型研究[J].北京大学学报(自然科学版),2007,43(4):496-501. 被引量:19
  • 4Dalai N. Triggs B. Histogram of oriented gradients for humanI>tection[C]//CVPR. 2005 :886-893.
  • 5Belongie S, Malik J,Puzicha J. Shape Matching and object recog-nition Using Shape Contexts[J]. IEEE Trans, on Pattern Analy-sis and Machine Intelligence, 2002,24C4) : 509-522.
  • 6Shi J , Thomasi C. Good feature to track[C] // IEEE Conferenceon Computer Vision and pattern Recognition. 1994:593-560.
  • 7Lucas B. Kanade T. An iterative image registration techniquewith an application to stereo vision[C] //' Proceedings of the In-ternational Joint Conference on Artificial Intelligence, 1982:674-679.
  • 8Strengert M,Kraus M,Ertl T. Pyramid Methods in GPU-BasedImage Processing[C]//Proceeding of Vision. Modeling.and Vi-sualization 2006. 2006:169-176.
  • 9Dollar P, Appel R.Belongie S. F'ast Feature pyramids for objectdetection[J]. IEEE Transactions on Pattern Analysis and Ma-chine Intelligence,2014,36(8) : 1532-1545.
  • 10Nvidia. NVIDIA CUDA A Programming Guide version 4. 0[EB/OIJ. http://www. nvidia. com/object/cuda-cn.

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部