摘要
为得到关于信号更为稀疏的表示,提出一种基于双字典集的信号稀疏分解算法。在算法过程中,建立如下两个字典集:已选字典集和待选字典集。该算法以重复加权提升搜索(RWBS)算法为基础,增加了一步更为严格的从待选字典集中选择最佳核函数的过程,故该算法在保留初始算法的优点的同时,可以产生更为稀疏的模型。通过仿真实验和真实数据实验验证了所提算法的性能。
A new sparse decomposition algorithm was presented to get a sparser representation of the signal. In the procedure of the algorithm, it established the two dictionary sets consisting of the selected dictionary set and the unselected dictionary set. The proposed algorithm added a more strict process which selected the best kernel from the unselected dictionary set to the original Repeated Weighted Boosting Search ( RWBS), so the proposed algorithm could produce a sparser model while reserving the advantages of the original algorithm. The effectiveness of the proposed algorithm is illustrated through several examples.
出处
《计算机应用》
CSCD
北大核心
2012年第9期2512-2515,共4页
journal of Computer Applications
基金
国家自然科学基金资助项目(61071188
61102103)
湖北省自然科学基金资助项目(2010CDB04205)
中央高校基本科研业务费专项资金资助项目(CUG110407)
关键词
双字典集
过完备字典集
匹配追踪
核匹配追踪
重复加权提升搜索
two dictionary sets
redundant dictionary
Matching Pursuit (MP)
Kernel Matching Pursuit (KMP)
Repeated Weight Boosting Search (RWBS)