期刊文献+

基于双字典集的信号稀疏分解算法 被引量:6

Signal sparse decomposition based on the two dictionary sets
下载PDF
导出
摘要 为得到关于信号更为稀疏的表示,提出一种基于双字典集的信号稀疏分解算法。在算法过程中,建立如下两个字典集:已选字典集和待选字典集。该算法以重复加权提升搜索(RWBS)算法为基础,增加了一步更为严格的从待选字典集中选择最佳核函数的过程,故该算法在保留初始算法的优点的同时,可以产生更为稀疏的模型。通过仿真实验和真实数据实验验证了所提算法的性能。 A new sparse decomposition algorithm was presented to get a sparser representation of the signal. In the procedure of the algorithm, it established the two dictionary sets consisting of the selected dictionary set and the unselected dictionary set. The proposed algorithm added a more strict process which selected the best kernel from the unselected dictionary set to the original Repeated Weighted Boosting Search ( RWBS), so the proposed algorithm could produce a sparser model while reserving the advantages of the original algorithm. The effectiveness of the proposed algorithm is illustrated through several examples.
出处 《计算机应用》 CSCD 北大核心 2012年第9期2512-2515,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(61071188 61102103) 湖北省自然科学基金资助项目(2010CDB04205) 中央高校基本科研业务费专项资金资助项目(CUG110407)
关键词 双字典集 过完备字典集 匹配追踪 核匹配追踪 重复加权提升搜索 two dictionary sets redundant dictionary Matching Pursuit (MP) Kernel Matching Pursuit (KMP) Repeated Weight Boosting Search (RWBS)
  • 相关文献

参考文献12

  • 1MALLAT S, ZHANG Z. Matching pursuit with time-frequency die- tionaries[ J]. IEEE Transactions on Signal Processing, 1993, 41 (12) : 3397 -3415.
  • 2邹红星,周小波,李衍达.时频分析:回溯与前瞻[J].电子学报,2000,28(9):78-84. 被引量:135
  • 3ARTHUR P L, PHILIPOS C L. Vocied/unvoiced speech discrimi- nation in noise using Gabor atomic decomposition[ C]//Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway, NJ: IEEE Press, 2003:820-828.
  • 4VINCENT P, BENGIO Y. Kernel matching pursuit[ J]. Machine Learning, 2002,48(1) : 169 - 191.
  • 5CHEN S, COWAN D F N, GRANT P M. Orthogonal least squares learning algorithm for radial basis function networks [ J]. IEEE Transactions on Neural Networks, 1991, 2(2) : 302 -309.
  • 6CHEN S, HONG X, HARRIS C J. Sparse kernel regression model- ing using combined locally regularized orthogonal least squares and D-optimality experimental design[ J]. IEEE Transactions on Auto- matic Control, 2003, 48(6) : 1029 - 1036.
  • 7CHEN S, WU Y, LUK B L. Combined genetic algorithm optimiza- tion and regularized orthogonal least squares learning for radial basis function networks [ J]. IEEE Transactions on Neural Networks, 1999, 10(5): 1239 -1243.
  • 8CHEN S, LUK B L. Adaptive simulated annealing for optimization in signal processing application[ J]. Signal Processing, 1999, 79(1) : 177 - 128.
  • 9XU P, YAO D Z. Two dictionaries matching pursuit for sparse de- composition of signals[ J]. Signal Processing, 2006, 86(11) : 3472 - 3480.
  • 10CHEN S, HONG X, LUK B L, et al. A tunable radial basis func- tion model for nonlinear system identification using particle swarm optimization[ C]// IEEE Conference on Decision and Control. Pis- cataway, NJ: IEEE Press, 2009:6762 -6767.

二级参考文献2

共引文献134

同被引文献59

  • 1杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:584
  • 2SORENSEN P,CUTULULIS N A,VIGUERAS-RODRIGUEZ A, et al. Power fluctuations from large wind fains[J]. IEEE Trans on Power Systems,2007,22(3):958-965.
  • 3刘振亚.巾圄电力与能源[M].北京:中国电力出版社,2012:104.109.
  • 4GIEBEL G,LANDBERG L,NIELSEN T S,et al. The ZEPHYR- project:the next generation prediction system[C]//Proc of the 2001 European Wind Energy Conference,EWEC'01. Copenhagen, Denmark: [s.n.] ,2001:777-780.
  • 5国家电网公司.Q/GDW392-2009风电场接人电网技术规定实施细则[S].北京:国家电网公司企业标准,2009.
  • 6SIDERATOS G,HATZIARGYRIOU N D. An advanced statistical method for wind power forecasting[J 1. IEEE Trans on Power Systems, 2007,22 ( 1 ) : 258-265.
  • 7MALLAT S G,ZHANG Z. Matching pursuits with time frequency dictionaries[J]. IEEE Trans on Signal Processing,1993,41 (12): 3397-3415.
  • 8LOVISLO L,da SILVA E A B,RODRIGUES M A M,et al. Efficient coherent adaptive representations of monitored electric signals in power systems using damped sinusoids[J]. IEEE Trans on Signal Processing,2005,53(10):3831-3846.
  • 9XU Peng,YAO Dezhong. Two dictionaries matching pursuit for sparse decomposition of signals[J]. IEEE Trans on Signal Pro- cessing, 2006,86 ( 11 ) : 3472-3480.
  • 10KARNIOTAKIS G,STAVRAKAKIS S G,NOGARET E F. Wind power forecasting using advanced neural network models [J]. IEEE Trans on Energy Conversion,1996,11(4):762-767.

引证文献6

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部