期刊文献+

Carbon nanotubes coated with platinum nanoparticles as anode of biofuel cell

Carbon nanotubes coated with platinum nanoparticles as anode of biofuel cell
原文传递
导出
摘要 A hybrid system of carbon nanotubes (CNTs) coated with poly (amidoamine) (PAMAM) dendrimer- encapsulated platinum nanoparticles (Pt-DENs) and glucose oxidase (GOx) was prepared through the layer-by-layer (LbL) self-assembly approach and then used as anode in enzyme-based biofuel cells (BFCs). The assembly process was monitored by C-potential measurement, and the as-resulted Pt-DENs/CNTs nanocomposites were characterized by transmission electron microscopy (TEM). The performance of electrodes modified by Pt-DENs/CNTs was also investigated by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). We found that the Pt-DENs]CNTs could enhance the electron trans- fer between the redox centers in enzyme and the electrode surfaces. Furthermore, by employing the Pt-DENs/CNTs modified electrodes as anode, the enzyme-based BFCs operated in a solution containing glucose generated an open-circuit voltage of approximately 640.0 mV and a maximum current density of about 90.0 μA/cmx, suggesting that Pt-DENs/CNTs may serve as an alternative anode to previously used noble metals in BFC applications. A hybrid system of carbon nanotubes (CNTs) coated with poly (amidoamine) (PAMAM) dendrimer- encapsulated platinum nanoparticles (Pt-DENs) and glucose oxidase (GOx) was prepared through the layer-by-layer (LbL) self-assembly approach and then used as anode in enzyme-based biofuel cells (BFCs). The assembly process was monitored by C-potential measurement, and the as-resulted Pt-DENs/CNTs nanocomposites were characterized by transmission electron microscopy (TEM). The performance of electrodes modified by Pt-DENs/CNTs was also investigated by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). We found that the Pt-DENs]CNTs could enhance the electron trans- fer between the redox centers in enzyme and the electrode surfaces. Furthermore, by employing the Pt-DENs/CNTs modified electrodes as anode, the enzyme-based BFCs operated in a solution containing glucose generated an open-circuit voltage of approximately 640.0 mV and a maximum current density of about 90.0 μA/cmx, suggesting that Pt-DENs/CNTs may serve as an alternative anode to previously used noble metals in BFC applications.
出处 《Particuology》 SCIE EI CAS CSCD 2012年第4期450-455,共6页 颗粒学报(英文版)
基金 supported by the National Natural Science Foundation of China (20925621, 20976054, and 21176083) the Fundamental Research Funds for the Central Universities the Program for Changjiang Scholars and Innovative Research Team inUniversity (IRT0825) the Shanghai Leading Academic Discipline Project (project number: B502) the Changzhou Youth Science and Technology Training Scheme (project number: CQ20090008)
关键词 Multiwall carbon nanotubesDendrimer-encapsulated platinumnanoparticlesGlucose oxidaseBiofuel cellsLbL self-assembly Multiwall carbon nanotubesDendrimer-encapsulated platinumnanoparticlesGlucose oxidaseBiofuel cellsLbL self-assembly
  • 相关文献

参考文献1

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部