期刊文献+

基于尺度空间的改进均值偏移目标跟踪

Improved Mean Shift Tracking Algorithm Based on Scales-spaces
下载PDF
导出
摘要 针对在均值偏移算法中颜色直方图不能够很好地对跟踪目标进行描述,提出了基于尺度空间的改进性均值偏移算法。使用跟踪目标的颜色特征和尺度空间特征对其统计直方图进行改进,并且通过尺度因子对目标的位置和大小进行了调整和修正。实验表明改进算法对目标在运动过程中放大变化具有很好的跟踪效果。 The color histogram can't describe objective well in mean-shift tracking algorithm. An improved mean-shift tracking algorithm based on scales-spaces is proposed. The spatial histogram is improved by color and scales-spaces features of the tracking target, and the target' s position and size are adjusted and corrected by a scale factor. Experiment proves that the present method has better tracking performance for target which is moving.
出处 《电视技术》 北大核心 2012年第17期148-151,共4页 Video Engineering
关键词 Mean SHIFT 目标跟踪 尺度空间 统计直方图 Mean Shift target tracking scales-spaces spatial histogram
  • 相关文献

参考文献8

  • 1FUKUNAGA K ,HOSTETLER L D. The estimation of gradient of a densi- ty function with applications in pattern recognition [ J ]. IEEE Trans. In- formation Theory, 1975,21 ( 1 ) :32-40.
  • 2CHENG Y Z. Mean Shift mode seeking and clustering[ J ]. IEEE Trans.Pattern Analysis and Machine Intelligence, 1995,17 (8) :790-799.
  • 3COMANICIU D,RAMESH V,MEER P. Kernel-based object tracking [ J ]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2003,23 (5) :564-575.
  • 4COLLINS R T. Mean Shift blob tracking through scale space[ C ]//Proc. IEEE International Conference on Computer Vision and Pattern Recogni- tion,2003. Madison, Wisconsin :IEEE Press ,2003:234-240.
  • 5王宇.基于Mean Shift的序列图像手势跟踪算法[J].电视技术,2010,34(6):97-99. 被引量:7
  • 6王宇雄,章毓晋,王晓华.4-D尺度空间中基于Mean-Shift的目标跟踪[J].电子与信息学报,2010,32(7):1626-1632. 被引量:8
  • 7LINDEBERG T. Scale-Space theory in computer vision [ M ]. Nether- lands : Kluwer Academic Publisher, 1994.
  • 8COLLINS R T. Mean-shift Nob tracking through scale space[ C]//Proc. IEEE Conference on Computer Vision and Pattern Recognition, 2003. Baltimore, USA : IEEE Press ,2003:234-240.

二级参考文献18

  • 1彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 2KAILATH T.The divergence and Bhattacharyya distance measures in signal selection[J].IEEE Trans. Comm. Tichnology, 1967 ( 15 ) :52-60.
  • 3RICHARD O D,PETER E H,DAVID G S. Pattern Classification[M].2nd Ed.李宏东,姚天翔,译.北京:机械工业出版社,2003.
  • 4WU Y,HUANG T S. Robust visual tracking by integrating multiple cues based on co-inference learning[J].International Journal of Computer Vision ,2004,58( 1 ) :55-71.
  • 5TRIESCH J, MALSBURG C V D.Self-organized integrationof adaptive visual cues for face tracking [C]//Proc. the Fourth International Conference on Automatic Face and Gesture Recognition. Grenoble, France : [s.n.], 2000 : 102-107.
  • 6COMANICIU D,RAMESH V,MEER P. Kernel-based object tracking [J].Pattern Analysis and Machine Intelligence, 2003,25 (5):564-577.
  • 7COMANICIU D,RAMESH V,MEER P. Real-time tracking of non- rigid objects using mean shift[J].IEEE Computer Vision and Pattern Recognition, 2000 (2) : 142-149.
  • 8CHENG Y.Mean-shift,mode seeking,and clustering[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995,17 (8) : 790-799.
  • 9Cheng Y. Mean shift, mode seeking, and clustering [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(8): 790-799.
  • 10Comaniciu D, Ramesh V, and Meer P. Real-time tracking of non-rigid objects using mean shift [C]. IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head, SC, USA. 2000. II: 142-149.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部