期刊文献+

等变上同调与ech超上同调的同构定理

An Isomorphism Theorem Between Equivariant Cohomology and ech Hypercohomology
原文传递
导出
摘要 首先证明了任意一个等变微分流形都存在等变良好开覆盖,且等变良好开覆盖集所组成的集合在全部开覆盖组成的集合中共尾.在此基础上,证明了等变上同调与ech超上同调的同构.此定理可应用于实代数簇的Deligne上同调研究. We first show that each equivariant smooth manifold has an equivariant good cover, and the equivariant good covers are cofinal in the set of open covers. We further this result to get an isomorphism theorem between equivariant cohomology and Cech hypercohomology. Such result can be applied to the study of Deligne cohomology of the real algebraic varieties.
作者 杨海波
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2012年第5期781-790,共10页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学天元青年基金(11126337) 江西省教育厅青年科学基金(GJJ12442) 江西省高校人文社科研究项目(JJ1239) 南昌航空大学科研启动基金(EA201007057)
关键词 等变上同调 ech超上同调 良好开覆盖 equivariant cohomology Cech hypercohomology good cover
  • 相关文献

参考文献13

  • 1Illman S., Smooth equivariant triangulations of G-manifolds for G a finite group, Math. Ann., 1978, 233: 199-220.
  • 2May J. Elmendorf A., Greenlees J., Equivariant Homotopy and Cohomology Theory, CBMS 91, American Mathematical Society, Providence, 1996.
  • 3Lewis L. Jr., May J., McClure J., Ordinary RO(G)-graded cohomology, Bull. Amer. Math. Soc. N.S., 1981, 4: 208-212.
  • 4Bredon G., Equivariant Cohomology Theories, Springer-Verlag, New York, 1967.
  • 5Bredon G., Introduction to Compact Transformation Groups, Academic Press, New York, 1972.
  • 6Prasolov V., Elements of Combinatorial and Differential Topology, American Mathematical Society, Prince- ton, 2006.
  • 7Munkres J., Elementary Differential Topology, Princeton University Press, Princeton, 1966.
  • 8Whitehead J., On Cl-complexes, Ann. of Math. Second Series, 1940, 41: 809-824.
  • 9Weibel C., An Introduction to Homological Algebra, Cambridge University Press, Cambridge, 1994.
  • 10Segal G., Categories and cohomology theories, Topology, 1974, 13: 293-312.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部