期刊文献+

一类N维非线性波动方程的Cauchy问题

Cauchy Problem for an N-Dimensional Nonlinear Wave Equation
原文传递
导出
摘要 证明下列非线性波动方程的Cauchy问题v_(tt)-α△v_(tt)-Δv=g(v)-αΔg(v),x∈R^N,t>0,(1)v(x,0)=v_0(x),v_t(x,0)=v_1(x),x∈R^N(2)在空间C^2([0,∞);H^s(R^N))(s>N/2)中存在唯一整体广义解v和在空间C^2([0,∞);H^s(R^N))(s>2+N/2N)中存在唯一整体古典解v,即u∈C^2([0,∞);C_B^2(R^N)).还证明Cauchy问题(1),(2)在C^3([0,∞);W^(m,p)(R^N)∩L~∞(R^N))(m≥0,1≤p≤∞)中有唯一整体广义解v和在C^3([0,∞);W^(m,p)(R^N)∩L~∞(R^N))(m>2+N/P)中有唯一整体古典解v,即v∈C^3([0,∞);C^2(R^N)∩L~∞(R^N)). We prove that the Cauchy problem for the nonlinear wave equationvtt -αΔvtt -Δv = g(v) -αΔg(v),x∈RN,t〉0,(1)v(x,0)=v0(x),vt(x,0) = v1(x),x∈RN(2)has a unique global generalized solution v in C2([0,∞);Hs(RN))(s〉N/2) and a uniqueglobal classical solution v in C2([0,∞);Hs(RN))(s〉2+N/2),i.e.,v∈C2([0,∞);CB2(Rn)).We also prove that the Cauchy problem(1),(2) admits a unique global generalizedsolution v in C3([0,∞);Wm,p(RN)∩L∞(RN))(m≥0,1≤p≤∞) and a uniqueglobal classical solution v in C3{[0,∞);Wm,p(RN) D L∞(RN))(m〉2 + N/P),i.e.,v∈C3([0,∞);C2(RN)∩L∞(RN)).
作者 陈国旺
机构地区 郑州大学数学系
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2012年第5期797-810,共14页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(10971199 11171311) 河南省教育厅基金(2009C110006)
关键词 N维非线性波动方程 CAUCHY问题 解的整体存在性 N-dimensional nonlinear wave equation Cauchy problem global exis-tence of solution
  • 相关文献

参考文献13

  • 1Kevrekidis P. G., Kevrekidis I. G., Bishop A. R., Titi E. S., Continuum approach to discreteness, Physical Review E, 2002, 65(4): 046613-1.
  • 2Makhankov V. G., Dynamics of classical solitions (in nonintegrable systems), Physics Reports, A Review Section of Phys. Left. Section C~ 1978, 35(1): 1-128.
  • 3Peter A. C., Randall J. L., Ralph S., Solitary-wave interactions in elastic rods, Studies in Applied Mathe- matics, 1986, 75: 95-122.
  • 4Chen G., Wang S., Cauchy problem for generalized IMBq equation, In: Proceeding of the Conference on Nonlinear Partial Differential Equations and Applications (Guo Boling, Yang Dadi eds), World Science, Singapore, 1998.
  • 5Liu Y., Existence and blow-up of solutions of a nonlinear Pochhammer-Chree equation, Indiana University Mathematics Journal, 1996, 45: 797-816.
  • 6Akmel De G., Blow-up of solutions of a generalized Boussinesq equation, IMA Journal of Applied Mathe- matics, 1998, 60: 123-138.
  • 7Chen G., Xing J., Yang Z., Cauchy problem for generalized IMBq equation with several variables, Nonlinear Analysis TMA, 1996, 26: 1255-1270.
  • 8Wang S., Chen G., The Cauchy problem for generalized IMBq equation in Ws'p(Rn), J. Math. Anal. Appl., 2002, 266: 38-54.
  • 9Stein E. M., Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, New Jersey, 1970.
  • 10Donoghue W. F., Distributions and Fourier Transforms, Academic Press, New York, 1969.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部