摘要
证明下列非线性波动方程的Cauchy问题v_(tt)-α△v_(tt)-Δv=g(v)-αΔg(v),x∈R^N,t>0,(1)v(x,0)=v_0(x),v_t(x,0)=v_1(x),x∈R^N(2)在空间C^2([0,∞);H^s(R^N))(s>N/2)中存在唯一整体广义解v和在空间C^2([0,∞);H^s(R^N))(s>2+N/2N)中存在唯一整体古典解v,即u∈C^2([0,∞);C_B^2(R^N)).还证明Cauchy问题(1),(2)在C^3([0,∞);W^(m,p)(R^N)∩L~∞(R^N))(m≥0,1≤p≤∞)中有唯一整体广义解v和在C^3([0,∞);W^(m,p)(R^N)∩L~∞(R^N))(m>2+N/P)中有唯一整体古典解v,即v∈C^3([0,∞);C^2(R^N)∩L~∞(R^N)).
We prove that the Cauchy problem for the nonlinear wave equationvtt -αΔvtt -Δv = g(v) -αΔg(v),x∈RN,t〉0,(1)v(x,0)=v0(x),vt(x,0) = v1(x),x∈RN(2)has a unique global generalized solution v in C2([0,∞);Hs(RN))(s〉N/2) and a uniqueglobal classical solution v in C2([0,∞);Hs(RN))(s〉2+N/2),i.e.,v∈C2([0,∞);CB2(Rn)).We also prove that the Cauchy problem(1),(2) admits a unique global generalizedsolution v in C3([0,∞);Wm,p(RN)∩L∞(RN))(m≥0,1≤p≤∞) and a uniqueglobal classical solution v in C3{[0,∞);Wm,p(RN) D L∞(RN))(m〉2 + N/P),i.e.,v∈C3([0,∞);C2(RN)∩L∞(RN)).
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2012年第5期797-810,共14页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(10971199
11171311)
河南省教育厅基金(2009C110006)