期刊文献+

一类趋化性模型行波解的存在性 被引量:2

Existence of the Traveling Wave Solutions for a Chemotaxis Equations
原文传递
导出
摘要 讨论了一类基于趋化性现象的强耦合非线性偏微分方程组,利用相轨分析方法,得到了该趋化性模型行波解存在的充分条件和必要条件. We study a strong coupling nonlinear partial differential equations, which modeling the chemotaxis phenomenon. In terms of similar phase plane method, some necessary or sufficient conditions for the existence of traveling wave solutions are ob- tained.
作者 陈学勇 杨茵
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2012年第5期817-828,共12页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(10802043) 河南省教育厅自然科学基金资助项目(12A110020)
关键词 行波 趋化性 强耦合系统:相轨分析法 traveling wave chemotaxis strongly coupled systems similar phase planemethod
  • 相关文献

参考文献1

二级参考文献10

  • 1Adler J. Chemotactic in Bacteria. Ann. Rev. Biochem., 1975, 44:341-356.
  • 2Keller E F, Segel L A. Traveling Bands of Chemotactic Bacteria: a Theoretical Analysis. J. Theoret.Biol., 1971, 30:235-248.
  • 3Scriber T L, Segel L A, Rogers E H. A Numerical Study of the Formation and Propagatin of Traveling Bands of Chemotactic Bacteric. J. Theoret. Biol., 1974, 46:189-219.
  • 4Keller E F, Odell G M. Necessary and Sufficient Conditions for Chemotactic Bands. Math. Biosci.,1975, 27:309-317.
  • 5Odell G M, Keller E F. Traveling Bands of Chemotactic Bacteric Revisted. J. Theoret. Biol., 1976,56:243-247.
  • 6Leah E K, James W, Daniel G. Do Travelling Band Solution Describe Cohesive Swarms? An Investigation for Migratory Locusts. J. Math. Biol., 1998, 36:515-549.
  • 7Odell G M. Biological Waves. In L.A,Segel (ed.). Mathematical Models in Molecular and Cellular Biology, Chapt.6.7, Cambridge: Cambridge University Press, 1980, 523-567.
  • 8Nagai T, Ikeda T. Travelling Waves in a Chemotactic Model. J. Math. Biol., 1991, 30:169-184.
  • 9Li Zhengyuan, Ye Qixiao.Travelling Wave Front Solutions for Reaction-diffusion Systems. J. of PDE, 1991, 4(3): 1-14.
  • 10Ye Qixiwo, Li Zhengyuan. Introduction to Reaction and Diffusion. Beijing: Science Press, 1990.

共引文献4

同被引文献19

  • 1Keller E F, Segel L A. Initiation of slime mold aggregation viewed as an instability. Journal of Theoretical Biology, 1970, 26(3): 399-415.
  • 2Othmer H G, Stevens A. Aggregation, blowup, and collapse: the ABCs of taxis in reinforced random walks. SIAM Journal on Applied Mathematics, 1997, 57(4): 1044-1081.
  • 3Keller E F, Segel L A. Traveling bands of chemotactic bacteria: a theoretical analysis. Journal of Theo- retical Biology, 1971, 30(2): 235-248.
  • 4Rosen C. On the propagation theory for bands of chemotactic bacteria. Mathematical Biosciences, 1974, 20(1/2): 185-189.
  • 5Keller E F, Odell G M. Necessary and sufficient conditions for chemotactic bands. Mathematical Bio- sciences, 1975, 27(3/4): 309-317.
  • 6Nagai T, Ikeda T. Traveling waves in a chemotactic model. Journal of Mathematical Biology, 1991, 30(2): 169-184.
  • 7Horstmann D, Stevens A. A constructive approach to traveling waves in chemotaxis. J Nonlinear Sci, 2004, 14(1): 1-25.
  • 8Schwetlick H. Traveling waves for chemotaxis-systems. Proceedings in Applied Mathematics and Mechan- ics, 2003, 3(1): 476-478.
  • 9Xue C, Hwang H J, Painter K J, Erban R. Travelling waves in hyperbolic chemotaxis equations. Bull Math Biol, 2011,73(8): 1695-1733.
  • 10Li T, Wang Z A. Nonlinear stability of traveling waves to a hyperbolieparabolic system modeling chemo- taxis. SIAM J Appl Math, 2009, 70(5): 1522-1541.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部