期刊文献+

一个不可定向曲面的极小禁用子图的构造

Generating Minimal Forbidden Subgraphs for a Non-Orientable Surface
原文传递
导出
摘要 曲面S的一个极小禁用子图是这样的一个图,它的任何一个顶点的度都不小于3,它不能嵌入在S上,但是删去任何一条边后得到的图能嵌入在S上.本文给出了四种构造一个不可定向曲面的极小禁用子图的方式,即粘合一个顶点,一个图的边被其它的图替换,粘合两个顶点,将一个图放在另一个图的一个曲面嵌入的面内. A graph G is a minimal forbidden subgraph for a surface S if G has no vertices with degree less than three, and if G is not embeddable in S but G - e is embeddable in S for any edge e of G. In the paper we give four methods generating minimal forbidden subgraphs for a non-orientable surface, i.e., amalgamating a vertex, edges of a graph replaced by other graphs, amalgamating two vertices and placing agraph in faces of an embedding of another graph in a surface.
作者 马登举 任韩
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2012年第5期829-840,共12页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(11171114 10971252)
关键词 曲面 嵌入 一个曲面的极小禁用子图 Is surface embedding minimal forbidden subgraph for a surface
  • 相关文献

参考文献10

  • 1Glover H. H., Huneke J. P., Wang C. S., 103 graphs that are irreducible for the projective plane, J. Combin. Theory Ser. B, 1979, 27: 332-370.
  • 2Archdeacon D., A Kuratowki theorem for the projective plane, Ph.D., Dissertation, the Ohio University, Ohio, 1980.
  • 3Archdeacon D., Huneke J. P., A Kuratowski theorem for nonorientable surfaces, J. Combin. Theory Set. B, 1989, 46: 173-231.
  • 4Bondy J. A., Murty U. S. R., Graph Theory with Applications, North Holland, New York, Amsterdam, Oxford, 1976.
  • 5Mohar B., Thomassen C., Graphs on Surfaces, Johns Hopkins University Press, Baltimore, London, 2001.
  • 6Parsons T. D., Pica G., Pisanski T., Ventre A. G. S., Orientably simple graphs, Math. Slovaca, 1987, 37: 391-394.
  • 7Stahl S., Beineke L. W., Blocks and the nonorientable genus of graphs, J. Graph Theory, 1977, 1: 75-78.
  • 8Battle J., Harary F., Kodama Y., Youngs J. W. T., Additivity of the genus of a graph,Bull. Amer. Math. Soc., 1962, 68: 565-568.
  • 9Ma D. J., Minimal forbidden subgraphs for a surface and the genus of a graph, Ph.D., Dissertation, the East China Normal University, Shanghai, 2011.
  • 10Tutte W. T., Separation of vertices by a circuit, Discrete Math., 1975, 12: 173-184.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部