期刊文献+

一种改进的混合高斯背景模型

An Improved Gaussian Mixture Model for Background Estimation
下载PDF
导出
摘要 针对经典混合高斯模型无法识别静态目标的问题,提出一种改进算法。通过加入了参数还原算法,并引入一个反馈调节环节,可以避免静态前景被学习进入背景。当目标停留超过预定帧数时,目标所覆盖的每个像素点的K个高斯函数进行参数还原,避免了目标被更新为背景的一部分。实验结果表明,提出的改进模型,不仅能检测长时间静止目标,而且能识别多模态背景。 Traditional Adaptive Gaussian Mixture Model will lose target when deal with arbitrary-long stationary object. In this paper, a novel method for detecting this kind of object is proposed to improve the performance of Adaptive Gaussian Mixture Model. Para- meter restoration is designed to deal with arbitrary-long stationary target and solve the short-comings of the latest algorithm. Experi- mental results show that the proposed algorithm proves to be a more robust method by detecting the stationary target in an arbi- Wary-long time.
机构地区 上海交通大学
出处 《微型电脑应用》 2012年第8期1-3,共3页 Microcomputer Applications
基金 国家自然科学基金(60833009 60975012)资助
关键词 背景模型 混合高斯模型 目标检测 Background Model Mixture Gaussian Model Object Detection
  • 相关文献

参考文献7

  • 1Ridder, C. Munkett, O. and Kirchner, H. "Adaptive Background Estimation and Foreground Detection Using Kalman-Filtering," [C] Proceeding of International Conference Recent Advances in Mechatronics, pp. 193 - 199, 1995.
  • 2Wren, C.R. Azarbayejani, A. Darrell, T. and Pentland, A. "Pfinder: Real-Time Tracking of the Human Body,"[C] IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp. 780-785, July 1997.
  • 3Stauffer C. and Grimson, W. L. "Adaptive Background Mixture Models for Real-time Tracking,"[C] Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 11, pp. 246-252, 1999.
  • 4Stauffer C. and Grirnson, W. L. "Learning Patterns of Activity Using Real-Time Tracking," [C] IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 747-757, 2000.
  • 5Heikkil M. and Pietikainen, M. "A Texture-based Method for Modeling the Background and Detecting Moving Objects", [C] IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 4, pp. 657-662, 2006.
  • 6Li, L. Huang, W. Gu, I.Y.-H. Tian, Q. "Statistical Modeling of Complex Backgrounds for Foreground Object Detection", [C] IEEE Transactions on Image Processing, Vol. 13, Iss. 11, pp. 1459, 2004.
  • 7Xiaodong Cai, Falah All, and Stipidis, E. "Background Modeling for Detecting Move-then-Stop Arbitrary-long Time Video Objects," [C] lOth Workshop on Image Analysis for Multimedia Interactive Services, 2009.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部