期刊文献+

一种由粗及精的视线追踪系统平面视线参数检测方法 被引量:4

Planar Gaze Parameter Detection in Gaze Tracking System with Active Infrared Light Source
下载PDF
导出
摘要 针对视线追踪系统视线参数检测需求和现有方法的不足,基于亮暗瞳差分方案提出了一种采用由粗及精策略的平面视线参数检测方法。在暗瞳图像应用AdaBoost方法定位人脸,根据人脸五官分布先验知识初步确定人眼区域并标记暗瞳图像对应的人眼区域。在差分图像采用投影法确定瞳孔潜在区域,通过形态和尺度分析滤波定位瞳孔。对瞳孔进行边缘检测和椭圆拟合,提取瞳孔中心参数。在暗瞳图像瞳孔对应区域附近搜索并检测普尔钦斑并提取普尔钦斑中心参数。根据瞳孔和普尔钦斑中心参数获取平面视线参数。在视线追踪系统中的应用表明该方法能够可靠、精确的检测平面视线参数。 In order to meet the requirements and improve the existing methods for parameter detection in gaze tracking system, an approach based on difference image of bright and dark pupils for planar gaze pa- rameter detection was proposed. First, an iteration algorithm called AdaBoost was used to find human face, and according to the priori knowledge of facial features, the eye region was determined and marked in the dark pupil image preliminarily. Then, in difference image, a projection method was applied to lo- cate the possible area of pupil, and pupil would be detected accurately by analyzing its shape and scale. Furthermore, edge detection and an ellipse fitting were used to extract the pupil center parameters, and in the corresponding pupil region in dark pupil image, Purkinje spot and its center parameters were detec- ted. The planar gaze parameters were then calculated according to the center parameters of pupil and Purkinje spot. Applications in gaze tracking system show that the method can detect the planar sight pa- rameters accurately.
出处 《兵工学报》 EI CAS CSCD 北大核心 2012年第8期902-911,共10页 Acta Armamentarii
基金 北京市重点学科建设项目(XK100080537) 北京市自然科学基金项目(4122050)
关键词 信息处理技术 视线追踪 平面视线参数 亮瞳图像 ADABOOST 瞳孔检测 椭圆拟合 information processing gaze tracking planar parameter of sight bright pupil image Ada-Boost pupil detection ellipse fitting
  • 相关文献

参考文献23

  • 1Duehowski T. Eye tracking methodology: theory, and practice [ M ]. New York: Springer-Verlag, 2003.
  • 2Jacob R J K. The use of eye movements in human computer inter- action techniques: what you look at is what you get[J]. ACM Transactions on Information Systems, 1991, 9(3 ) : 152 - 169.
  • 3Morimoto C H, Koons D, Amir A, et al. Pupil detection and tracking using multiple light sources [ J ]. Image and Vision Com- puting, 2000, 18(4) : 331 -335.
  • 4Noureddin B, Lawrence P D, Man C F. A non-contact device for tracking gaze in a human computer interface[ J ]. Computer Vision and Image Understanding, 2005, 98( 1 ) : 52 - 82.
  • 5Qiang Ji, Zhiwei Zhu, Peilin Lan. Real-time nonintrusive monito- ring and prediction of drive fatigue[ J]. 1EEE Transactions on Ve- hicular Technology, 2004, 53 (4) : 1052 - 1069.
  • 6Mimica M R M, Morimoto C H. A computer vision framework for eye gaze tracking[ C ]//Proceedings of the XVI Brazilian Sympos- kum on Computer Graphics and Image Processing, 2003, 3:1530 - 1834.
  • 7Ebisawa Y, Satoh S. Effectiveness of pupil area detection lech- nique using two light sources and image difference method [ C ]/// Engineering in Medicine and Biology Society, 1993, San Diego,1993 : 1268 - 1269.
  • 8Ebisawa Y, Improved video-bazed eye-gaze detection method [ J ]. IEEE Transactions on Instrumentation and Measurement, 1998,47 (4) : 948 -955.
  • 9Morimoto C H, Koons D, Amir A, et al. Pupil detection and tracking using multiple light sources[ J]. Image and Vision Com- puting, 2000, 18(4) : 331 -336.
  • 10Morimoto C, Flickner M. Real-time multiple face detection using active illumination [ C ] //Fourth IEEE International Conference on Automatic Face and Gesture Recognition. Grenoble: Wiley- IEEE Press, 2000.

二级参考文献4

  • 1Le V B,IEEE Transactions Pattern analysis Machine Intelligence,1991年,13卷,3期,217页
  • 2杨芳,1997年研究生毕业论文
  • 3刘书桂,仪器仪表学报,19卷,6期,576页
  • 4普雷帕拉塔 F P,计算几何导论

共引文献20

同被引文献40

  • 1ALSABTI K, RAIZADA S, WANI V B, et al. Efficacyand reliability of fundus digital camera as a screening toolfor diabetic retinopathy in Kuwait[ J]. Journal of Diabe-tes and its Complications, 2003 , 17(4) ; 229-233.
  • 2LEESE G P, ELLINGFORD A, MORRIS A D, et al.Screening using compressed digital retinal images suc-cessfully identifies retinopathy [ J ]. Diabetes Care,2003,26(1) : 247.
  • 3GARG S,DAVIS R M. Diabetic retinopathy screeningupdate[ J]. Clinical Diabetes, 2009 , 27(4) : 140-145.
  • 4MASSINP,CHABOUIS A,ERGINAY A, et al.OPHDIAT : A telemedical network screening system fordiabetic retinopathy in the lle-de-France[ J] . Diabetes &metabolism, 2008, 34(3) : 227-234.
  • 5SCHULZE-DOBOLD C, ERGINAY A, ROBERT N, etal. OPHDIAT ; Five-year experience of a telemedicalscreening programme for diabetic retinopathy in Paris andthe surrounding area[ J]. Diabetes & Metabolism, 2012,38(5) : 450457.
  • 6ZEIMER R,ZOU S,MEEDER T, et al. A fundus cam-era dedicated to the screening of diabetic retinopathy inthe primary-care physician ’ s office [ J ]. InvestigativeOphthalmology & Visual Science, 2002, 43 ( 5 ):1581-1587.
  • 7DAUGMAN J G. High confidence visual recognition ofpersons by a test of statistical independence [ J ]. IEEETransactions on Pattern Analysis and Machine Intelli-gence, 1993,15(11) : 1148-1161.
  • 8WILDES R P. Iris recognition: An emerging biometric technology [ J ]. Proceedings of the IEEE, 1997, 85 (9) : 1348-1363.
  • 9ZHU D,MOORE S T, RAPHAN T. Robust pupil centerdetection using a curvature algorithm [ J ]. ComputerMethods and Programs in Biomedicine, 1999 , 59 (3):145-157.
  • 10SHINODA T, KATO M. A pupil diameter measurementsystem for accident prevention [ C ]. IEEE InternationalConference on Systems, Man, and Cybernetics, Taipei,2006: 1699-1703.

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部