期刊文献+

一种基于KICA-GMM的过程故障检测方法 被引量:4

Process fault detection method based on KICA-GMM
下载PDF
导出
摘要 核独立元分析(kernel independent component analysis,KICA)故障检测方法的故障检测时间易受独立元顺序和主导独立元数目经验选取的影响,针对这个问题,提出基于KICA和高斯混合模型(Gaussian mixturemodel,GMM)的故障检测方法。采用KICA从正常工况测量数据中提取独立元,用GMM拟合各独立元的概率密度函数,建立基于GMM的监控量及其控制限;计算各独立元的监控量均值,以此判断其非高斯性强弱,对每个强非高斯独立元进行单独监控,对弱非高斯部分采用主元分析法进行监控。在Tennessee Eastman过程上的仿真结果说明,相比于KICA故障检测方法,所提方法不需要排序独立元和选取主导独立元数目,避免了其对故障检测时间的影响,能够有效利用过程信息,缩短故障检测的延迟时间。 The fault detection time of many methods based on kernel independent component analysis(KICA)is easily affected by the order of independent components(ICs)and the number of dominant ICs chosen empirically.Aiming at this problem,a method based on KICA and Gaussian mixture model(GMM)is proposed.KICA is used to extract ICs from the dataset measured under the normal condition,GMM is adopted to fit the probability density function of each IC,and then a monitoring statistic and corresponding control limit are constructed based on the GMM.The average value of each IC’s monitoring statistic is calculated and applied to judge its non-Gaussian degree.Each strong non-Gaussian IC is monitored independently by the built monitoring statistic,and the weak non-Gaussian part is monitored by principal component analysis.The simulation results on the Tennessee Eastman process illustrate that,in contrast to the fault detection methods based on KICA,the proposed method needn’t sort the ICs and select the number of dominant ICs avoiding their effects on fault detection time,make effective use of process information,and shorten the fault detection latency.
出处 《化工学报》 EI CAS CSCD 北大核心 2012年第9期2859-2863,共5页 CIESC Journal
基金 国家自然科学基金项目(51104175) 山东省自然科学基金项目(ZR2011FM014) 中央高校基本科研业务费专项资金(27R1205005A 10CX04046A)~~
关键词 故障检测 核独立元分析 高斯混合模型 独立元顺序 主元分析法 fault detection; kernel independent component analysis; Gaussian mixture model; order of independent components; principal component analysis
  • 相关文献

参考文献15

  • 1Hsu C C, Chen M C, Chen L S. Intelligent ICA-SVM fault detector for non-Gaussian multivariate process monitoring [J]. Expert Systems with Applications, 2010, 37 (4): 3264-3273.
  • 2Lee J, Kang B, Kang S H. Integrating independent component analysis and local outlier factor for plant-wide process monitoring [J]. Journal of Process Control, 2011, 21 (7): 1011-1021.
  • 3张沐光,宋执环.一种基于独立元贡献度的子空间故障检测方法[J].控制理论与应用,2010,27(3):296-302. 被引量:10
  • 4Lee J M, Yoo C K, Lee I 13. Statistical process monitoring with independent component analysis[J]. Journal of Process Control, 2004, 14 (5) : 467-485.
  • 5陈国金,梁军,钱积新.独立元分析方法(ICA)及其在化工过程监控和故障诊断中的应用[J].化工学报,2003,54(10):1474-1477. 被引量:30
  • 6Lee J M, Qin S J, Lee I B. Fault detection of non-linear process using kernel independent component analysis [J]. The Canadian Journal of Chemical Engineering, 2007, 85 (4): 526-536.
  • 7Tian X M, Zhang X L, Deng X G, Chen S. Multiway kernel independent component analysis based on feature samples for batch process monitoring [J]. Neurocornputing, 2009, 72 (7):1584-1596.
  • 8Zhang Y W, Qin S J. Improved nonlinear fault detection technique and statistical analysis [J]. AIChE Journal, 2008, 54 (12): 3207-3220.
  • 9Wang L, Shi H B. Multivariate statistical process monitoring using an improved independent component analysis [J]. Chemical Engineering Research and Design, 2010, 88 (4):403-414.
  • 10Santamaria I, Pantaleon C J, Ibanez J, Artes A. Deconvolution of seismic data using adaptive Gaussian mixtures [J]. Remote Sensing IEEE Transactions on Geoscience and 1999, 37 (3): 855-859.

二级参考文献8

  • 1毛勇,夏铮,尹征,孙优贤,万征.Fault Diagnosis Based on Fuzzy Support Vector Machine with Parameter Tuning and Feature Selection[J].Chinese Journal of Chemical Engineering,2007,15(2):233-239. 被引量:10
  • 2梁军,钱积新. Multivariate Statistical Process Monitoring and Control: Recent Developments and Applications to Chemical Industry. Chinese J of Chemical Eng, 2003, 11 (2): 191--203.
  • 3Johnson R A, Wichern D W. Applied Multivariate Statistical Analysis. 4th ed. Englewood Cliff, NJ: Prentice Hall, 1998.
  • 4Ypma A, Tax D, Duin R. Robust Machine Fault Detection with Independent Component Analysis and Support Vector Data Description. In: Proc of the 1999 IEEE Signal Processing Society Workshop, 1999.67 - 76.
  • 5Hyvarinen A, Oia E. Independent Component Analysis:Algorithms and Applications. Neural Networks, 2002, 13:411-430.
  • 6Tax D, Duin R. Support Vector Domain Description. Pattern Recognition Letters , 1999, 20:1191 -- 1199.
  • 7Luyben W. Process Modeling, Simulation, and Control for Chemical Engineers. 2nd ed. New York: McGraw-Hill, 1988.
  • 8周东华,胡艳艳.动态系统的故障诊断技术[J].自动化学报,2009,35(6):748-758. 被引量:307

共引文献45

同被引文献30

  • 1谭朋柳,舒坚,吴振华.一种信息-物理融合系统体系结构[J].计算机研究与发展,2010,47(S2):312-316. 被引量:36
  • 2高飞,杨平先,孙兴波.基于小波变换与阀值收缩法的图像增强去噪[J].四川理工学院学报(自然科学版),2006,19(2):8-11. 被引量:11
  • 3威廉·鲍威斯.感知控制论[M].张华夏,范冬萍,等,译.广州:广东高等教育出版社,2004.
  • 4Cao X R, Liu R W. General approach to blind source separation[J] .IEEE Trans. Signal Processing,1996,44(3 ): 562-571.
  • 5Hyvafinen A,Oja E. Independent component analysis:atutorial[J] .Neural Networks,2000,13 (45):411-430.
  • 6Comom P. Independent component analysis: a new con- cept[J].Signal Processing,1994,36(3):287-314.
  • 7Edward A Lee. Cyber-physical systems-are computing foundations adequate[ C]. Position Paper for NSF Workshop on Cyber-Physical System: Research Motivation,Techniques and Roadmap ,2006:6 - 14.
  • 8Qian Yu, Xu Liang, Li Xiuxi, et al. LUBRES : An expert system de- velopment and implementation for real-time fault diagnosis of a lu- bricating oil refining process[ J]. Expert System With Application, 2008,35 ( 3 ) : 1252 - 1266.
  • 9Dong-Hoon Shin, Shibo He, Junshan Zhang. Robust, secure, and cost-effective design for cyber-physical systems [ J ]. Proc IEEE, 2014,29 ( 1 ) :66 - 69.
  • 10Li Ke-wei, Liu Qing-wei,Wang Fu-rong,et al. Join optimal con-es- tion control and channel assignment for muhi-radio multi channel wireless networks in eyber-physical systems [ C ]//UICAT2009- Symposia and Workshops on Ubiquitous, Autonomic Trusted Com- puting in Conjunction with the UIC'09 and ATC'09 Conference, 2009:456 - 460.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部