期刊文献+

基于随机学习因子混沌PSO算法的甲醇合成转化率测量 被引量:2

Measurement of methanol conversion rate based on random learning factor PSO with chaos
下载PDF
导出
摘要 粗甲醇转化率不仅是粗甲醇的主要技术指标,也是直接影响粗甲醇经济指标的重要因素。在之前工作的基础上,提出了两类随机学习因子混沌粒子群优化算法(RLFPSOC)。两种新算法分别从种群进化初期和后期两个方面引入混沌遍历性的特点,有效提高了算法的全局寻优能力。典型测试函数的仿真实验验证RLFPSOC算法的有效性。最后,将提出的RLFPSOC算法用于神经网络参数的优化,并建立甲醇合成塔转化率预测模型。实验结果表明,基于RLFPSOC的神经网络模型能够较好地预测甲醇合成转化率,并进一步验证了RLFPSOC算法的全局收敛性能。 The conversion rate of the crude methanol is the primary indicator of methanol production,but also the key factor to influence the economic target.Based on the previous work,two random learning factor particle swarm optimizations with chaos are proposed.In the algorithms,the ergodicity of chaos is introduced respectively at early and late stage of evolution.The simulation of test functions evaluates the effectiveness of RLFPSOC.Finally,the proposed RLFPSOC,which is employed to optimize the parameter of neural network,is integrated with neural network to measure the methanol conversion rate.The results indicate that RLFPSOC-based neural network model can predict the methanol conversion rate well,which further verifies the global convergence of RLFPSOC.
出处 《化工学报》 EI CAS CSCD 北大核心 2012年第9期2899-2903,共5页 CIESC Journal
基金 国家自然科学基金项目(61174040) 国家高技术研究发展计划项目(2009AA04Z141)~~
关键词 粒子群优化算法 混沌 甲醇转化率 particle swarm optimization; chaos; methanol conversion rate
  • 引文网络
  • 相关文献

参考文献13

  • 1Kennedy J,Eberbart R C.Particle swarm optimization//Proceedings of the IEEE International Conference on Neural Networks.Perth,WA,1995,4:1942-1948.
  • 2Song Weiduan(宋维端),Xiao Renjian(肖任坚),Fang Dingye(房鼎业).甲醇工艺[M].Beijing:Chemical Industry Press,1999.
  • 3Shi Y,Eberhart R C.Fuzzy adaptive particle swarm optimization//Proceedings of the 2001 Congress on Evolutionary Computation.Seoul,South Korea,2001:101-106.
  • 4陈国初,俞金寿.变邻域宽度的爬山微粒群优化算法及其应用[J].化工学报,2005,56(10):1928-1931. 被引量:3
  • 5Chen C, Yang B, Yuan Jun, Wang Z, Wang L. Establishment and solution of eight-lump kinetic model forFCC gasoline secondary reaction using particle swarm optimization [J]. Fuel, 2007, 86 (15): 2325-2332.
  • 6Prata D M,Schwaab M,Lima E L,Pinto J C.Nonlinear dynamic data reconciliation and parameter estimation through particle swarm optimization:application for an industrial polypropylene reactor[J].Chem. Eng. Sci.,2009,64(18):3953-3967.
  • 7Eberhart R C,Kennedy J.A new optimizer using particle swarm theory//Proceedings of the Sixth International Symposium on Micro Machine and Human Science.Nagoya,Japan,1995:39-43.
  • 8Shi Y,Eberhart R C.Modified particle swarm optimizer//IEEE World Congress on Computation Intelligence.Piscatauay,NJ,1998:69-73.
  • 9Lin W,et al.Based on random learn factor particle swarm optimization algorithm and its application//Proceeding of 2011 AASRI Conference on Artificial Intelligence and Industry Application.Male,Maldives,2011,2:261-263.
  • 10Lorenz E N.The Essence of Chaos[M].Washington:University of Washington Press,1993.

二级参考文献9

  • 1房鼎业 姚佩芳.甲醇生产技术及进展[M].华东化工学院出版社,..
  • 2LinShixiong(林世雄).Petroleum Processing Engineering (石油炼制工程)[M].Beijing: Petroleum Industry Press,2000..
  • 3Kennedy J,Eberhart R C.Particle swarm optimization.In: Proc. IEEE Int. Conf. on Neural Networks. Perth, WA:IEEE Service Center,1995.1942-1948
  • 4Eberhart R C,Kennedy J.A new optimizer using particle swarm theory.In: Proc. the Sixth Int. Symposium on Micro Machine and Human Science.Nagoya:IEEE Service Center,1995.39-43
  • 5Eberhart R C,Shi Y.Particle swarm optimization: developments, applications and resources.In: Proc. 2001 Congress on Evolutionary computation.Seoul:IEEE Service Center, 2001.81-86
  • 6Parsopoulos K E,Vrahatis M N.Recent approaches to global optimization problems through particle swarm optimization.In:Proc.Natural Computing.Netherlands:Kluwer Academic Publisher,2002.235-306
  • 7LiShugang(李树刚).[D].Shanghai: Shanghai Jiao Tong University,2003.
  • 8吴建锋,何小荣,陈丙珍.一种用于动态化工过程建模的反馈神经网络新结构[J].化工学报,2002,53(2):156-160. 被引量:6
  • 9罗健旭,邵惠鹤.应用多神经网络建立动态软测量模型[J].化工学报,2003,54(12):1770-1773. 被引量:34

共引文献18

同被引文献19

  • 1马海平,李雪,林升东.生物地理学优化算法的迁移率模型分析[J].东南大学学报(自然科学版),2009,39(S1):16-21. 被引量:47
  • 2孟庆军.甲醇合成过程的建模、分析与优化条件选择[J].天然气化工—C1化学与化工,2004,29(5):32-39. 被引量:5
  • 3Simon D. Biogeography-based Optimization [J]. IEEE Transactions on Evolutionary Computation (S 1089-778X), 2008, 12(6): 702-713.
  • 4Eberhart R, Kennedy J. A new optimizer using particle swarm theory [C]// Proceedings of the International Symposium on Micromechatronics and Human Science. Nagoya, JPN: IEEE, 1995: 39-43.
  • 5Kennedy J, Eberbart R. Particle swarm optimization [C]// Proceedings of the IEEE international conference on neural networks, IV, 1995. USA: IEEE, 1995: 1942-1948.
  • 6Simon D, Ergezer M, Du D W, Rarick R. Markov Models for Biogeography-Based Optimization [J]. IEEE Transactions on Systems, Man, and Cybernetics--Part B: Cybernetics (S1083-4419) 2011, 41(1): 299-306.
  • 7Simon D, Rarick R, Ergezer M, Du D W. Analytical and Numerical Comparisons of Biogeography-based Optimization and Genetic Algorithms [J]. Information Sciences (S0020-0255), 2011, 181: 1224-1248.
  • 8Simon D. A Probabilistic Analysis of a Simplified Biogeography- Based Optimization Algorithm [J] Evolutionary Computation (S1063-6590), 2011, 19(2): 167-188.
  • 9Simon D. A Dynamic System Model of Biogeography-based Optimization [J]. Applied Soft Computing (S 1568-4946), 2011, 11: 5652-5661.
  • 10Simon D Shah A, Scheidegger C. Distributed Learning with Biogeography - Based Optimization: Markov Modeling and Robot Control [J]. Swarm and Evolutionary Computation ($2210-6502), 2013, 10: 12-24.

引证文献2

二级引证文献21

;
使用帮助 返回顶部