期刊文献+

基于粒子滤波联合估计的气相聚乙烯质量指标在线估计 被引量:2

Polymer properties on-line estimation for gas-phase polyethylene based on particle filtering joint estimation
下载PDF
导出
摘要 针对气相聚乙烯生产中各种复杂的工况造成在线估计精度下降的现象,基于乙烯聚合机理并利用特征建模方法建立了聚乙烯质量指标预测模型,结合扩展卡尔曼滤波,提出了粒子滤波联合估计方法,即将状态和修正系数组成增广状态向量,实现对质量指标预测模型的在线滤波修正,并分析了基于粒子滤波估计的收敛性。所提方法在中石化某气相聚乙烯装置的长周期运行结果证实了所提方法的可行性和有效性,为实施聚乙烯装置的先进控制奠定了基础。 Due to the lack of suitable on-line polymer property measurements,the control of multi-grade product quality in industrial polymerization reactors is difficult.In this article,a predictive model of polymer properties is deduced for industrial polyethylene process by combining the first principle model and the feature modeling scheme.Combining the extended Kalman filtering,a method of design the particle filtering joint estimation is proposed to update the estimation of polymer properties based on the off-line lab analysis data in this article.The application results of the proposed method to an industrial gas-phase polyethylene plant have verified its effectiveness and feasibility.With the proposed method,multi-grade polymer properties of industrial gas-phase polyethylene process can be on-line estimated and make it possible for achieving the advanced on-line multi-grade product quality control.
出处 《化工学报》 EI CAS CSCD 北大核心 2012年第9期2904-2912,共9页 CIESC Journal
基金 国家自然科学基金项目(60974065)~~
关键词 气相聚乙烯 特征建模 粒子滤波 联合估计 扩展卡尔曼滤波 polyethylene; feature modeling; particle filtering; joint estimation; extended Kalman filter
  • 相关文献

参考文献18

  • 1McAuley K B, MacGregor J F. On-line inference of polymer properties in an industrial polyethylene reactor [J]. AIChE Journal, 1991, 37 (6):825-835.
  • 2赵众,马博.大型聚乙烯工业装置质量指标的次优强跟踪滤波估计[J].化工学报,2008,59(7):1635-1639. 被引量:7
  • 3吴宏鑫,王迎春,邢琰.Intelligent control based on intelligent characteristic model and its application[J].Science in China(Series F),2003,46(3):225-240. 被引量:11
  • 4Athan M, Wishner R P, Bertolini A. Suboptimal state estimation for continuous time nonlinear systems from discrete noisy measurements[J]. IEEE Transactions on Automatic Control, 1968, 13 (10): 504-514.
  • 5Jo J H, Bankhoff S G. Digital monitoring and estimation of polymerization reactors[J]. AIChE Journal, 1976, 22 (2): 361-369.
  • 6Tanizaki H. Nonlinear filters: estimation and application [D]. Pennsylvania: University of Pennsylvania, 1991.
  • 7Gordon N, Salmond D, Smith A. Novel approach to nonlinear and non-Gaussian Bayesian state estimation [J]. IEEE Proceedings on Radar and Signal Processing, 1993, 140:107-111.
  • 8Tao Chen, Julian Morris, Elaine Martin. Particle filters for state and parameter estimation in batch processes [J]. Journal of Process Control, 2005, 15:665-673.
  • 9Tao Chen, Julian Morris, Elaine Martin. Dynamic data rectification using particle filters [J]. Computers and Chemical Engineering, 2008, 32:451-462.
  • 10吕国林,龚建华.气相法聚乙烯工艺技术比较与选择[J].江苏化工,2003,31(2):10-15. 被引量:10

二级参考文献8

共引文献25

同被引文献25

  • 1章祥荪,张菊亮,廖立志.An adaptive trust region method and its convergence[J].Science China Mathematics,2002,45(5):620-631. 被引量:10
  • 2丁宝苍,邹涛,李少远.时变不确定系统的变时域离线鲁棒预测控制[J].控制理论与应用,2006,23(2):240-244. 被引量:11
  • 3杨小军,潘泉,王睿,张洪才.粒子滤波进展与展望[J].控制理论与应用,2006,23(2):261-267. 被引量:74
  • 4李良群,姬红兵,罗军辉.迭代扩展卡尔曼粒子滤波器[J].西安电子科技大学学报,2007,34(2):233-238. 被引量:60
  • 5ARULAMPALAM M S, MASKELL S, GORDON N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2):174-188.
  • 6MAIZ C S, MOLANES-LOPEZ E M, MIGUEZ J, et al. A particle filtering scheme for processing time series corrupted by outliers[J]. IEEE Transactions on Signal Processing, 2012, 60(9):4611-4627.
  • 7YIN S, ZHU X. Intelligent particle filter and its application to fault detection of nonlinear system[J]. IEEE Transactions on Industrial Electronics, 2015, 62(6):3852-3861.
  • 8CHEN T, MORRIS J, MARTIN E. Particle filters for state and parameter estimation in batch processes[J]. Journal of Process Control, 2005, 15(6):665-673.
  • 9CHEN T, MORRIS J, MARTIN E. Dynamic data rectification using particle filters[J]. Computers & Chemical Engineering, 2008, 32(3):451-462.
  • 10LóPEZ-NEGRETE R, PATWARDHAN S C, BIEGLER L T. Constrained particle filter approach to approximate the arrival cost in moving horizon estimation[J]. Journal of Process Control, 2011, 21(6):909-919.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部