期刊文献+

TLS估计的小波自适应零值绝缘子红外热像去噪 被引量:3

Wavelet adaptive denoising method for faulty insulators infrared thermal image based on Total Least Squares estimation
下载PDF
导出
摘要 为了弥补传统Bayes估计的小波去噪方法依赖于小波系数先验分布模型的不足,针对零值绝缘子红外图像具有低信噪比特点,提出了基于总体最小二乘(TLS)估计的小波自适应零值绝缘子红外热像去噪方法。受噪声污染的零值绝缘子红外图像经小波变换后,不处理低频小波系数,获取各尺度、各方向的高频小波系数进行总体最小二乘估计,对估计后的小波系数进行逆变换得到去噪后的图像。实验结果表明,该方法与软阈值法和Bayes估计法相比,能够有效去除噪声,保留了图像的细节信息,去噪效果良好。 In order to make up for traditional wavelet denoising based on Bayes estimation depends on prior distribution of wavelet coefficients, and on account of faulty insulators infrared image with characteristics of low SNR (Signal to Noise Ratio), a wavelet adaptive denoising method for faulty insulators infrared image based on Total Least Squares (TLS) estimation is presented. Wavelet transform is applied to the image and keeps the low frequency wavelet coefficients unchanged. The high frequency wavelet coefficients on various scales go through TLS esti- mation before they together with the original low frequency wavelet coefficients, are used to reconstruct images. Experimental results show that the method effectively removes the noise, keeps the image details, and has a better denoising effect, compared to soft threshold and Bayes estimation.
出处 《计算机工程与应用》 CSCD 2012年第25期198-202,共5页 Computer Engineering and Applications
基金 国家重点产业振兴和技术改造项目(发改投资[2010]2272号)
关键词 总体最小二乘估计 零值绝缘子 红外图像去噪 小波变换 Total Least Squares(TLS) estimation faulty insulator infrared image denoising wavelet transform
  • 相关文献

参考文献21

二级参考文献80

共引文献135

同被引文献42

  • 1王胜,陈文,匡小兵,张杉,常心悦,郑欣.一种基于多特征显著性融合的绝缘子区域检测与定位算法[J].计算机应用研究,2020,37(S02):351-353. 被引量:7
  • 2刘洋,陆倚鹏,高嵩,毕晓甜,尹骏刚,朱向前,姚建刚.边缘检测在盘形悬式瓷绝缘子串红外图像上的应用[J].电瓷避雷器,2020(1):198-203. 被引量:21
  • 3徐汝俊,薛鸿鹏,等.红外热像技术在电网中的应用[C]∥2013年中国电机工程学会年会论文集.2013:419-423.
  • 4Donoho D L,Johnstone l M.Ideal spatial Adaptation via Wavelet Shrinkage[J].Biometrika,1994,81:425-455.
  • 5Donoho D L,Johnstone l M.Adapting to Unknown Smoothness via Wavelet Shrinkage[J].Jourbal of American Statistical Assocation,1995,0(432):1200-1224.
  • 6Hashemi S M,Beheshti S.A Daptive image Denoising by Rigo-rous Bayesshrink Thresholding[C]∥2011 IEEE Statistical Signal Processing Workshop (SSP).2011:713-716.
  • 7Wang Xin-chun,Hong Ming,Yang Yong-feng.Images Denoising with Mapshrink Estimate and Dual-threshold in Curvelet Domain[C]∥Image Analysis and Signal Processing (IASP).2010:304-308.
  • 8Rahman S M M,Ahmad M O,Swamy M N S.Bayesian Wavelet-Based Image Denoising Using the Gauss Hermite Expansion[J] IEEE Transactions on Image Processing,2008,7(10):146-150.
  • 9Dai Y,Tang G,Wang T.Locally Optimum Detection of a Noise Model Based on Generalized Gaussian Distribution [C]∥Proc.ICAIC.Volume 1,Springer-Verlag Berlin Heidelberg 2011.2011:456-462.
  • 10Parmar J M,Patil S A.Performance Evaluation and Comparison of Modified Denoising Method and the Local Adaptive Wavelet Image Denoising Method [C]∥Intelligent Systems and Signal Processing (ISSP).2013:101-105.

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部