期刊文献+

铁代谢与蛋白质泛素化-降解调控研究进展 被引量:1

Recent advance on crosstalk between iron metabolism and cellular protein ubiquitylation and degradation
原文传递
导出
摘要 铁元素为几乎所有的生命体所必需,维持铁代谢稳态对机体的正常功能至关重要。铁代谢紊乱与人类多种疾病的发生和发展有关。已知铁代谢稳态受到一系列参与铁代谢环节的关键蛋白质,如IRP2等的精确调节。这些重要蛋白质的稳定性、生理活性的动态变化及其协调作用是细胞维持铁代谢平衡的分子基础。除了转录和转录后水平的调控,泛素化等翻译后修饰方式和蛋白质降解是细胞精确调控参与铁代谢的蛋白质的水平及功能普遍而有效的方式之一;同时,细胞的铁代谢状态也影响细胞内参与泛素化等翻译后修饰途径的酶类的活性和稳定性,从而在铁代谢和蛋白质修饰-降解途径之间形成反馈机制,实时和动态地完成对细胞内铁代谢水平的精确调控。就相关领域的最新进展作简要综述。 As iron is one of the essential metal elements for life, maintaining homeostasis of iron metabolism is crucial for any cell to survive and function normally. Perturbed iron metabolism has been a known cause of many human diseases. Delicate regulatory mechanisms have been evolved to maintain iron homeostasis at both organismand cell level. Previously, we and others have shown that heine, as a major form of iron existing in cell, regulates folding, ubiquitylation and/or degradation of heine-binding proteins, such as IRP2 and ATE1 etc. in both prokaryotes and eukaryotes. There were now most recent reports that FBXL5, an F-box ubiquitin ligase, ubiquitylates iron regulatory protein 2 (IRP2) in an iron-dependent manner, while FBXL5 itself is stabilized by iron at elevated level. Here we review advances and present our perspectives of research into crosstalk between iron metabolism and cellular protein ubiquitylation and proteolysis.
出处 《生命科学》 CSCD 2012年第8期785-793,共9页 Chinese Bulletin of Life Sciences
基金 国家自然科学基金项目(31070678) 上海市浦江人才基金项目(PJ201000123)
关键词 铁代谢稳态 IRP2 FBXL5 血红素 蛋白质降解系统 iron homeostasis IRP2 FBXL5 heme protein ubiquitylation
  • 相关文献

参考文献55

  • 1Gruper Y, Bar J, Bacharach E, et al. Transferrin receptor co-localizes and interacts with the hemochromatosis factor (HFE) and the divalent metal transporter-I (DMTI) in trophoblast cells. J Cell Physiol, 2005, 204(3): 901-12.
  • 2Zhang DL, Senecal T, Ghosh MC, et al. Hepcidin regulates ferroportin expression and intracellular iron homeostasis of erythroblasts. Blood, 2011, 1!8(10): 2868- 77.
  • 3Andrews NC. An iron-clad role for proteasomal degrada- tion. Cell Metab, 14(3): 281-2.
  • 4Hentze MW, Muckenthaler MU, Galy B, et al. Two to tango: regulation of mammalian iron metabolism.Cell, 2010, 142(1): 24-38.
  • 5Kim BH, Jun YC, Jin JK, et al. A|teration of iron regulatory proteins (IRP1 and IRP2) and ferritin in the brains of scrapie-infected mice. Neurosci Lett, 2007, 422(3): 158-63.
  • 6. t Valerio LG. Mammalian 'iron metabolism. Toxicol Mech Methods, 2007, 17(9): 497-517.
  • 7Ferring-Appel D, Hentze MW, Galy B. Cell-autonomous and systemic context-dependent functions of iron regulatory protein 2 in mammalian iron metabolism. Blood, 2009, 113(3): 679-87.
  • 8Wallander ML, Zumbrennen KB, Rodansky ES, et al. Ironindependent phosphorylation of iron regulatory protein 2 regulates ferritin during the cell cycle. J Biol Chem, 2008, 283(35):2 3589-98.
  • 9Stys A, Galy B, Starzynski RR, et al. Iron regulatory protein 1 outcompetes iron regulatory protein 2 in regulating cellular iron homeostasis in response to nitric oxide. J Biol Chem, 2011, 286(26): 22846-54.
  • 10Galy B, Ferring-Appel D~ Sauer SW, et al. Iron regulatory proteins secure mitochondrial iron sufficiency and function. Cell Metab, 2010, 12(2): 194-201.

同被引文献7

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部