期刊文献+

基于双反馈模式的大范围自感应AFM测量系统 被引量:1

Large Range Self-sensing AFM Measurement System Based on Dual Feedback Measurement Model
下载PDF
导出
摘要 为了提高原子力显微镜(AFM)的测量范围,设计了一种基于双反馈测量模式的大范围自感应原子力显微镜系统,测量系统中有两条反馈回路:一条反馈回路由压电陶瓷与AFM测头组成,动态响应较快的压电陶瓷位移台的运动量可以表征被测样品表面的高频信息;另一条反馈回路由压电陶瓷位移台和纳米测量机(NMM)的反馈控制器组成,利用压电陶瓷位移台的位移信号控制NMM运动,NMM的mm级=向测量范围使得被测样品较大变化范围的低频轮廓信息很容易地被表征出来。使用本系统对平面样品和一维栅格进行了测量实验,实验结果表明采用双反馈的测量模式的AFM测量系统能够有效地表征被测样品的低频轮廓信息和表面高频信息,测量范围能够达到mm级,纵向分辨率达到nm级,具有良好测量重复性。 A large range self-sensing AFM measurement system based on dual feedback measurement model was designed. The purpose is to improve the AFM measurement range. The self-sensing AFM system has two feedback loops : one is composed by piezoelectric ceramic transformer (PZT) and AFM measurement head. The fast dynamic response of the PZT displacement platform can characterize high frequency information of the sample surface; another loop is PZT displacement platform and the nano measuring machine (NMM) feedback controller. The PZT displacement stage position signal controls the NMM movement, and NMM millimeter z direction measurement range makes wide variation range low frequency contour information of the samples easily be characterized. By the system ,fiat samples and one-dimensional lattice are measured by experiments, the experimental results show that using dual feedback AFM measurement system can effectively characterize the sample frequency contour information and surface high frequency information, measurement range can reach millimeter level, the longitudinal resolution reaches nanometer level and the measurement repeatability is good.
出处 《计量学报》 CSCD 北大核心 2012年第5期385-390,共6页 Acta Metrologica Sinica
基金 国家自然科学基金项目(91023022) 国家科技支撑计划项目(2011BAK15802)
关键词 计量学 原子力显微镜测头 双反馈测量模式 压电陶瓷台 纳米定位平台 Metrology AFM head Dual-feedback measurement Piezoelectric ceramic transformer (PZT) Nanometer positioning stage
  • 相关文献

参考文献7

  • 1JAGER Gerd,GRUNWALD Rainer,MANSKE Eberhard,HAUSOTTE Tino,FUβL Roland.纳米定位测量机操作测量结果(英文)[J].纳米技术与精密工程,2004,2(2):81-84. 被引量:14
  • 2Nanosensors. Akiyama-Probe Guide [ EB ] . http:// www. akiyamaprobe. com, 2011-05-13.
  • 3赵健,郭彤,马龙,傅星,胡小唐.小型自感应原子力显微镜测头及其标定[J].纳米技术与精密工程,2011,9(2):168-173. 被引量:1
  • 4Jager G, Hausotte T, Manske E, et al. Nanomeasuring and nanopositioning engineering [ J ] . Measurement, 2010,43 (9) : 1099 - 1105.
  • 5Dai G L, Pohlenz F, Danzebrink H U, et al. Improving the performance of interferometers in metrological scanning probe microscopes [ J ] , Measurement Science and Technology,2004,15 (2) :444 - 450.
  • 6Stucklin S, Gullo M R, Akiyama T, et al. Atomic force microscopy for industry with the akiyama-probe sensor [ C]//International Conference on Nanoscience and Nanotechnology. Keystone, USA, 2008:79 - 82.
  • 7Moller C, Allen M, Elings V, et al. Tapping-Mode Atomic Force Microscopy Produces Faithful High- Resolution Images of Protein Surfaces [ J ] . Biophys J, 1999,77 (2) : 1150 - 1158.

二级参考文献20

  • 1[1]Kramar J,Jun J,Scire F,et al.The molecular measuring machine[ A ].In:Proceedings of the 1998 ICMT[ C ].1998,477-487.
  • 2[2]Taegue E C.Generating and measuring displacements up to 0.1 m to an accuracy of 0.1 nm:Is it possibile? [J].SPIE Handbook The Technology of Proximal Probe Lithography,1993.
  • 3[3]Jager G,Manske E,Hausotte T,et al.Miniature interferometers developed for applications in nano-devices [ A ].In:7th International Conference on Mechatronic Technology,ICMT 2003[ C].2003,41-45.
  • 4[4]Schott W,Jager G.Miniature Interferometers for Precise Distance Measurements(Invited Paper)[ A].In:17a Annual Meeting of ASPE[ C].2002,67-72.
  • 5[5]Jager G,Manske E,Hausotte T,et al.Nanometrologynanomeasuring machines [ A ].In:2001 Annual Meeting ASPE[C].Washington DC:2001,23-27.
  • 6[6]Jager G,Manske E,Hansotte T,et al.Operation and Analysis of nanopositioning and nanomeasuring machine [ A ].In:17th Annual Meeting of ASPE[ C ].St Louis:2002,299-304.
  • 7Guo T, Chang H, Chen J P, et al. Micro-motion analyzer used for dynamic MEMS characterization [ J ]. Optics and La- sers in Engineering, 2009, 47(3/4) : 512-517.
  • 8Binnig G, Quate C F, Gerber Ch. Atomic force microscope [J]. Phys Rev Lett, 1986, 56(9) : 930-933.
  • 9Garcla R, P6rez R. Dynamic atomic force microscopy meth- ods[J]. Surface Science Reports, 2002, 47(6/7/8): 197- 301.
  • 10Martin Y, Williams C C, Wickramasinghe H K. Atomic force microscope-force mapping and profiling on a sub 100-~ scale[J]. JAppl Phys, 1987, 61(10): 4723-4729.

共引文献13

同被引文献8

  • 1西蒙·赫金.自适应滤波器原理[M].4版.北京:电子工业出版社,2010.
  • 2Butt H J, Cappella B, Kappl M. Force measurement with the atomic force microscope: Technique, interpretation and application[J]. Surface Science Report, 2005, 59: 1-152.
  • 3Xu Z H,Kim K S,Zou Q Z, et al. Broadband measurement of rate-dependent viscoelasticity at nanoscale using scanning probe microscope: Poly(dimethylsiloxane) example[J]. Applied Physics Letters, 2008, 93: 1-3.
  • 4Kim K S,Zou Q Z. A Modeling-Free Inversion-Based Iterative Feedforward Control for Precision Output Tracking of Linear Time-Invariant Systems[J]. ASME Transactions on Mechatronics, 2013, 18(6): 1767-1777.
  • 5Lake R S.Viscoelastic measurement techniques[J]. Review of Scientific Instruments, 2004, 75(4): 797-810.
  • 6方勇纯,张玉东,贾宁.适用于原子力显微镜先进扫描模式的学习控制系统[J].控制理论与应用,2010,27(5):557-562. 被引量:9
  • 7潘宏侠,许昕,张盈盈.一种改进的自适应滤波器[J].火炮发射与控制学报,2011,32(2):62-66. 被引量:4
  • 8谢平,张磊,刘坤,邹清泽.基于迭代学习控制的材料黏弹性纳米测量[J].纳米技术与精密工程,2012,10(2):154-159. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部