期刊文献+

分数阶PIλDμ控制器参数λ和μ分析 被引量:1

Analysis of Parameters of λ andμ for Fractional Order PIλDμ Controller
下载PDF
导出
摘要 针对分数阶PIλDμ控制器的积分阶次A和微分阶次μ在0〈λ,μ〈2的范围内变化时,对分数阶控制系统的影响进行了频率特性和阶跃响应分析,给出了阶次取值的合理范围。首先采用分数阶微积分方程的数值解法,对分数阶闭环控制系统进行数值计算,且其中的分数阶微积分算子用近似计算公式来代替。然后分别采用分数阶PIλ控制器和分数阶PDμ控制器当积分阶次A和微分阶次肛变化时,利用Bode图从频率特性和单位阶跃响应两方面分别对其性能进行分析,频率特性分析与实际阶跃响应的结果一致,表明分数阶PIλDμ矿控制器的积分阶次λ和微分阶次μ均有一较佳的取值范围。 The influence of frequency characteristic and step response performance for the fractional order control system while the integral order λand differential orderμ are changed in the range of 0 〈 λ ,μ 〈 2 for the fractional order PIλDμcontroller are analyzed. The reasonable ranges of orders are also obtained. Firstly, the numerical solution of fractional order differential equation is adopted to compute the numerical solution for the fractional order closed control system. The fractional order differential and integral operators are replaced by the approximate recurrent evaluate operator. Secondly, fractional order PIλ and PDμ controller are adopted to analyze the performance of control system which adopt the frequency characteristic and step response for fractional order control system while the integral order Aand differential orderμ change, respectively. The analyses of frequency characteristic are accord with the result of practical step response, which shown the integral order Aand differential orderμ of fractional order PIλDμcontroller have the better range.
出处 《计量学报》 CSCD 北大核心 2012年第5期452-456,共5页 Acta Metrologica Sinica
基金 国家863计划(2006AA042402)
关键词 计量学 PIλDμ控制器 积分阶次λ 微分阶次μ 数值解法 Metrology PIλDμ controller Integral order λ Differential orderμ Numerical solution
  • 相关文献

参考文献9

  • 1Ziegler J G, Nichols N B. Optimum Settings for Automatic Controllers [J]. Transactions of the ASME, 1942, 64:759-768.
  • 2Dorcak L Numberical models for simulation the fractional order control systems[R]. UEF-04-94, 1994.
  • 3Oustaloup A. La De rivation non Entiere [ M ]. Paris: HERMES, 1995.
  • 4Hamamci S E. Stabilization using fractional-order PI and PID controllers[ J]. Nonlinear Dynamic, 2008, 51 (1-2) : 329 - 343.
  • 5Petras I, Cheng Y Q, Vinagre B M, et al. Stability of linear time invariant systems with interval fractional orders and onterval coefficients [ C ]//Proceedings of International Conference on Computation Cybernetics. Vienna, 2004.
  • 6Hamamci S E. An algorithm for stabilization of fractionalorder time delay systems using fractional-order PID controllers [ J ]. IEEE Transactions on Automatic Control, 2007, 52(10) : 1964 - 1969.
  • 7ChenY Q, Dou H F, Vinagre B M, et al. A robust tuning method for fractional order PI controller [ C ]// Proceedings of the 2^nd IFAC Workshop on Fractional Differentiation and its Applications. Porto, Portugal, 2006.
  • 8Podlubny I, Dorcak L, Kostial I. On fractional derivatives, fractional-order dynamic systems and PI^λD^μ- controllers [ C ]//Proceeding of the 36^th Conference on Decision & Control. San Diego, California, 1997.
  • 9Podlubny I. Fractional differential equations [ M ] . San Diego: Academic Press, 1999.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部