期刊文献+

体内外光滑假丝酵母菌氟康唑耐药机制的比较研究 被引量:2

Mechanisms of fluconazole resistance in clinical and experimental induced isolates of Candida glabrata
原文传递
导出
摘要 目的研究比较临床分离和体外诱导的耐氟康唑光滑假丝酵母菌的耐药机制。方法选取临床分离的4对氟康唑敏感一耐药配对的光滑假丝酵母菌,其中4株敏感株在体外氟康唑的作用下均被诱导为耐药株。利用罗丹明6G试验比较敏感株与两种耐药株的外排泵作用,实时荧光定量RT-PCR检测外排相关基因CDRl、CDR2、SNQ2和ERG11的表达。同时,对PDRl基因进行PCR扩增和测序,对比分析临床耐药株和体外诱导耐药株的突变位点。结果临床耐药株和体外诱导耐药株外排泵的功能均明显强于敏感株;两者CDRl表达均显著升高,而CDR2和SNQ2则无明显变化;ERGl1在敏感与耐药菌株之间的表达水平也无显著差别;两种耐药株的PDRl均发现错义突变位点,其中P927S、L543P及$947L突变尚未被报道过。结论光滑假丝酵母菌在体内外氟康唑作用下PDRl均产生突变,引起外排相关基因,尤其是CDRl的表达增加从而增强了外排泵的作用导致耐药。 Objective To investigate the mechanisms of fluconazole resistance in clinical and ex- perimental induced isolates of C. glabrata. Methods Efflux of rhodamine 6G was performed to evaluate the effects of efflux pumps. The expression levels of transporter genes CDR1, CDR2, SNQ2 and ERG11 were examined by real-time RT-PCR. Meanwhile, sequence of PDR1 was determined by PCR based DNA sequen- cing. Results Efflux pumps of all fluconazole-resistant isolates had stronger effects than that of susceptible isolates, consistently with significant upregulation of CDR1, but no obvious difference was found in CDR2 or SNQ2. Also, no notable change in the expression level of ERG11 between susceptible and resistant isolates. PDR1 mutations existed in both clinical and experimental induced isolates of C. glabrata, among which P927S, L543P and S947L haven't been reported previously. Conclusion Mutations of PDR1 were induced by fluconazole both in vivo and in vitro, which will result in overexpression of CDR1 and strengthen the effect of efflux pump.
出处 《中华微生物学和免疫学杂志》 CAS CSCD 北大核心 2012年第6期537-541,共5页 Chinese Journal of Microbiology and Immunology
关键词 光滑假丝酵母菌 外排泵 ERG11 氟康唑 Candida glabrata Efflux pumps ERG11 Fluconazole
  • 相关文献

参考文献22

  • 1Sternberg S. The emerging fungal threat. Science, 1994, 266 (5191) : 1632-1634.
  • 2Li L, Redding S, Dongari-Bagtzoglou A. Candida glabrata: an emerging oral opportunistic pathogen. J Dent Res, 2007, 86 (3) : 204 -215.
  • 3Pappas PG, Rex JH, Lee J, et al. A prospective observational study of candidemia: epidemiology, therapy, and influences on mortality in hospitalized adult and pediatric patients. Clin Infect Dis, 2003, 37(5) : 634-643.
  • 4Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev, 2007, 20 ( 1 ): 133-163.
  • 5Rex JH, Walsh TJ, Sobel JD, et al. Practice guidelines for the treatment of candidiasis. Infectious Diseases Society of America. Clin Infect Dis, 2000, 30(4) : 662-678.
  • 6Sanguinetti M, Posteraro B, Fiori B, et al. Mechanisms of azole resistance in clinical isolates of Candida glabrata collected during a hospital survey of antifungal resistance. Antimicrob Agents Che- mother, 2005, 49(2) : 668-679.
  • 7Bennett JE, Izumikawa K, Marr KA. Mechanism of increased fluconazole resistance in Candida glabrata during prophylaxis. Antimicreb Agents Chemother, 2004, 48 (5) : 1773-1777.
  • 8Sanglard D, Ischer F, Bille J. Role of ATP-binding-cassette trans- porter genes in high-frequency acquisition of resistance to azole antifungals in Candida glabrata. Antimicrob Agents Chemother, 2001,45(4) : 1174-1183.
  • 9Vermitsky JP, Edlind TD. Azole resistance in Candida glabrata: coordinate upregulation of muhidrug transporters and evidence for a Pdrl-like transcription factor. Antimicrob Agents Chemother, 2004, 48(10) : 3773-3781.
  • 10Tsai HF, Krol AA, Sarti KE, et al. Candida glabrata PDR1, a transcriptional regulator of a pleiotropic drug resistance network, mediates azole resistance in clinical isolates and petite mutants. Antimicrob Agents Chemother, 2006, 50(4) : 1384-1392.

二级参考文献9

  • 1Li L,Redding S,Dongaci-Bagtzoglou A. Candida glabrata:an emerging oral opportunistic pathogen.J Dent Res,2007,86:204-215.
  • 2Hajjeh RA, Sofair AN,Harrison LH, et at. Incidence of bloodstream infections due to Candida species and in vitro susceptibilities of isolates collected from 1998 to 2000 in a population-based active surveillance program.J Clin Microbiol,2004,42:1519-1527.
  • 3Trick WE,Fridkin SK,Edwards JR,et at.National Nesocomial Infections Surveillance System Hospitals.Secular trend of hospital-acquired cendidemia among intensive care unit patients in the United States during 1989-1999.Clin Infect Dis,2002,35:627-630.
  • 4Lott TJ,Frade JP, Lockhart SR. Multilocus sequence type analysis reveals both clonality and recombination in populations of Candida glabrata bloodstream isolates from U.S. surveillance studies.Eukaryot Cell,2010,9:619-625.
  • 5Brillowska-Dabrowska A,Bergmann O,Jensen IM,et al.Typing of Candida isolates from patients with invasive infection and concomitant colonization.Scand J Infect Dis,2010,42:109-113.
  • 6Lévesque S,Michaud S,Arbeit RD,et al. High-Resolution Melting System to Perform Multilecus Sequence Typing of Campylobacter jejuni.PLoS One,201 1,6:e16167.
  • 7Redkar RJ,Dubé MP,McCleskey FK,et al.DNA fingerprinting of Candida rugosa via repetitive sequence-based PCR.J Clin Microbiol,1996,34:1677-1681.
  • 8Shin JH,Chae MJ,Song JW,et al.Changes in karyotype and azole susceptibility of sequential bloodstream isolates from patients with Candida glabrala candidemia.J Clin Microbiol,2007,45:2385-2391.
  • 9Wise MG,Healy M,Reece K,et al.Species identification and strain differentiation of clinical Candida isolates using the DiversiLab system of automated repetitive sequence-based PCR.J Med Microbiol,2007,56:778-787.

共引文献5

同被引文献15

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部