期刊文献+

全互穿半乳糖基水凝胶的制备与细胞活性研究

Preparation and cell viability of hydrogels based on galactosylated acrylate with full interpenetrating polymer network structure
下载PDF
导出
摘要 采用两步法,分别以无机纳米粘土硅酸镁锂(LMSH)和亚甲基双丙烯酰胺(MBA)作为异丙基丙烯酰胺(NIPAm)和氨基半乳糖丙烯酸衍生物(GAC)的物理和化学交联剂,制备得到全互穿的P(NIPAm/LMSH)/P(GAC/MBA)水凝胶;采用红外光谱、扫描电镜和称重法研究了全互穿水凝胶的化学结构、内部孔洞、(消)溶胀和温度脉冲响应性行为,并探索了凝胶表面的细胞活性.结果表明:全互穿水凝胶孔洞数量多,尺寸为20~30μm;10 min内溶胀度增加1.4倍,失水率超过60%,并表现出良好的温度脉冲响应性,且随脉冲次数的增加,溶胀度逐渐下降;鼠成纤细胞(L929)培养结果表明2~8 d内水凝胶表面细胞数量逐渐增加,但低于聚苯乙烯组织培养板(TCPS)上的细胞数量. Adopting two-step method,the P(NIPAm/LMSH)/P(GAC/MBA) hydrogel with full interpenetrating polymer network is prepared by using inorganic nanoclay lithium magnesium silicate hydrate(LMSH) as physical cross-linker and using N-methylenebisacrylamide(MBA) as chemical cross-linker of N-isopropylacrylamide(NIPAm) and galactosylated acrylate.The chemical structure,interior pore shape,(de)swelling behavior and stimuli-responsibility are investigated by Fourier transform infrared spectroscopy(FTIR),scanning electron microscope(SEM) and weight method.The cell viability on the surface of resulting hydrogel is also explored.The results show that the P(NIPAm/LMSH)/P(GAC/MBA) hydrogel presents numerous pore and larger pore ranged from 20 to 30 μm.Within 10 min,the swelling ratios increase 1.4 times and water retention decreases over 60%.The hydrogel also shows excellent impulse responsibility,and with increasing impulse cycle times,the swelling ratio decreases gradually.In the case of L929 cell culture on the surface of hydrogel,cell number increases in 2-8 d,while lower than that of on the surface of tissue culture polystyrene(TCPS).
出处 《天津工业大学学报》 CAS 北大核心 2012年第4期1-5,共5页 Journal of Tiangong University
基金 国家自然科学基金(50973048 21104058) 天津市应用基础及前沿技术研究计划项目(12JQNJC01400)
关键词 全互穿 水凝胶 异丙基丙烯酰胺 无机纳米粘土 细胞活性 full interpenetrating polymer network hydrogel isopropylacrylamide inorganic nanoclay cell viability
  • 相关文献

参考文献8

  • 1YIM E K F, LEONG K W. Significance of synthetic nanostructures in dictating cellular response [J]. Nanomedicine, 2005 ( 1 ) : 10-21.
  • 2OSADA Y, GONG J P. Soft and wet materials: Polymer gels [J]. Advanced Materials, 1998, 10(11) : 827-837.
  • 3宫政,丁珊珊,尹玉姬,崔元璐,姚康德.组织工程用水凝胶制备方法研究进展[J].化工进展,2008,27(11):1743-1749. 被引量:11
  • 4刘永,崔英德,尹国强,陈循军,张步宁.组织工程用蛋白基水凝胶[J].材料导报,2008,22(8):25-28. 被引量:6
  • 5HARAGUCHI K, LI H J, MATSUDA K, et al. Mechanism of forming organic/inorganic network structures during in-situ free-radical polymerization in PNIPA-Clay nanocomposite hydrogels[J]. Macromolecules, 2005, 38(8): 3482-3490.
  • 6HARAGUCHI K, LI H J, SONG L, et al. Tunable optical and swelling/deswelling properties associated with control of the coil-to-globule transition of poly (N-isopropylacrylamide) in polymer-clay nanocomposite gels[J]. Macromolecules, 2007, 40(19) : 6973-6980.
  • 7WANG J Y, CHEN L, ZHAO Y P, et al. Cell adhesion and accelerated detachment on the surface of temperature sensitive chitosan and poly (N-isopropylacrylamide) hydrogels [J]. Journal of Materials Science: Materials in Medicine, 2009,20(2) : 583-590.
  • 8WANG J Y, XIAO F, ZHAO Y P, et al. Cell proliferation and thermally induced cell detachment of galactosylated thermoresponsive hydrogels[J]. Carbohydrate Polymers, 2010, 82: 578-584.

二级参考文献101

  • 1Van de Wetering P, Metters A T, Schoenmakers R G, et al. Poly(ethylene glycol) hydrogels formed by conjugate addition with controllable swelling, degradation, and release of pharmaceutically active proteins[J]. J. ControlRelease, 2005, 102: 619-627.
  • 2Rizzi S C, Hubbell J A. Recombinant protein-co-PEG networks as cell-adhesive and proteolytically degradable hydrogel matrixes. Part 1 : Development and physicochernical characteristics[J]. Biomacromolecules, 2005(6): 1226-1238.
  • 3Raeber G P, Lutolf M P, Hubbell J A. Molecularly engineered PEG hydrogels: A novel model system for proteolytically mediated cell migration[J]. Biophys. J., 2005, 89: 1374-1388.
  • 4DuBose J W, Cutshall C, Metters A T. Controlled release of tethered molecules via engineered hydrogel degradation: Model development and validation[J]. J. Biomed. Mater. Res.(PartA), 2005, 74A: 104-116.
  • 5Hiemstra C, Van der Aa L J, Zhong Z, et al. Novel in situ forming degradable dextran hydrogels by Michael addition chemistry: Synthesis, rheology and degradation[J]. Macromolecules, 2007, 40: 1165-1173.
  • 6Tada D, Tanabe T, Tachibana A, et al. Albumin-crosslinked alginate hydrogels as sustained drug release carrier[J]. Mater. Sci. Eng. C-BiomimeticSupramol. Syst., 2007, 27(4): 870-874.
  • 7Gunasekaran S, Ko S, Xiao L. Use of whey proteins for encapsulation and controlled delivery applications[J].J. Food Eng., 2007, 83( 1 ): 31-40.
  • 8Lugao A B, Malmonge S M. Use of radiation in the production of hydrogels[J].Nucl, lnstrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 2001, 185: 37-42.
  • 9Jabbari E, Nozari S. Swelling behavior of acryl acid hydrogels prepared by γ-radiation crosslinking of poly-acrylic acid in aqueous solution[J]. Eur. Polym. J., 2000, 36: 2685-2692.
  • 10Lu X, Zhai M, Li J, et al. Radiation preparation and thermo-response swelling of interpenetrating polymer network hydrogel composed of PNIPAAm and PMMA[J]. Radiat. Phys. Chem., 2000, 57: 477-480.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部