期刊文献+

Approximate Solutions of Nonlinear Fractional Kolmogorov-Petrovskii-Piskunov Equations Using an Enhanced Algorithm of the Generalized Two-Dimensional Differential Transform Method

Approximate Solutions of Nonlinear Fractional Kolmogorov–Petrovskii–Piskunov Equations Using an Enhanced Algorithm of the Generalized Two-Dimensional Differential Transform Method
原文传递
导出
摘要 By constructing the iterative formula with a so-called convergence-control parameter, the generalized two-dimensional differential transform method is improved. With the enhanced technique, the nonlinear fractional Kolmogorov-Petrovskii-Piskunov equations are dealt analytically and approximate solutions are derived. The results show that the employed approach is a promising tool for solving many nonlinear fractional partial differential equations. The algorithm described in this work is expected to be employed to solve more problems in fractional calculus.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2012年第8期182-188,共7页 理论物理通讯(英文版)
基金 Supported by National Natural Science Foundation of China under Grant No.71171035
关键词 differential transform method fractional differential equation approximate solution 柯尔莫哥洛夫 偏微分方程 广义差分 变换方法 增强算法 分数阶 非线性 二维
  • 相关文献

参考文献32

  • 1B.J. West, M. Bolognab, and P. Grigolini, Physics of Fractal Operators, Springer, New York (2003).
  • 2K.S. Miller and B. Ross, An Introduction to the Frac- tional Calculus and Fractional Differential Equations, Wi- ley, New York (1993).
  • 3S.G. Samko, A.A. Kilbas, and O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gor- don and Breach, Yverdon (1993).
  • 4I. Podlubny, Fractional Differential Equations, Academic Press, San Diego (1999).
  • 5G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Academic Publishers, Boston (1994).
  • 6J.H. He, Int. J. Non-Linear Mech. 34 (1999) 699.
  • 7J.H. He, Comput. Methods Appl. Mech. Engrg. 178 (1999) 257.
  • 8S.J. Liao, Beyond Perturbation: Introduction to the Ho- motopy Analysis Method, Chapman Hall/CRC Press, Boca Raton (2003).
  • 9S.J. Liao, Commun. Nonlinear Sci. Numer. Simulat. 14 (2009) 983.
  • 10S.J. Liao, Commun. Nonlinear Sci. Numer. Simulat. 15 (2010) 2003.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部