期刊文献+

主成分分析在震动信号目标识别算法中的应用 被引量:6

Application of principal component analysis in target recognition algorithm of seismic signals
原文传递
导出
摘要 为了改进基于震动信号的地面运动目标识别算法,提出了一种基于主成分分析(PCA)的2次特征提取算法.首先对地面运动目标引起的震动信号进行目标特性分析,提取多维的特征值;然后利用主成分分析方法对众多的特征值进行分析,去除特征值之间的相关性,提取综合特征值并应用于分类器,得到目标识别结果.基于实地采集的地面运动目标的震动信号进行实验,结果表明:该方法有效地减少了特征值的维数和相关性,降低了分类器训练的难度和训练时间,同时提高了目标的正确识别率. In order to improve the algorithm of ground moving targets based on seismic signals,an algorithm of second feature extraction based on principal component analysis(PCA)was presented.First the target characteristics of seismic signals caused by ground moving targets were analyzed and multi-dimensional feature vectors were extracted.Then the large number of feature vectors was analyzed through principal component analysis.After the correlation between the feature vector was removed,the integrated feature vector was extracted and used in classifier to obtain result of target recognition.Based on real seismic signals of ground targets,experiment results indicate that this method can effectively decrease the dimension and correlation of feature vectors,reduce the difficulty and classifier training time,and improve the performance of classification,providing an idea for target recognition of seismic signals.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第7期24-28,共5页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家重大科技专项资金资助项目(2011ZX03005-006 2010ZX03006-004)
关键词 目标识别 识别算法 主成分分析 震动信号 特征提取 target recognition recognition algorithm principal component analysis seismic signals feature extraction
  • 相关文献

参考文献8

  • 1Tong Libiao,Lu Wenjun,Qi Dening,et al.Target recognition based on seismic sensors and neural net-work[C]∥The Eighth International Conference on Electronic Measurement and Instruments.Xi′an:ICEMI′,2007:18-21.
  • 2聂伟荣,朱继南,郭亚军,夏虹.地震动信号的分析与目标识别(英文)[J].电子科技大学学报,2003,32(1):26-30. 被引量:6
  • 3曹红兵,魏建明,刘海涛.无线传感网中多传感器特征融合算法研究[J].电子与信息学报,2010,32(1):166-171. 被引量:9
  • 4陈建宏,刘浪,周智勇,永学艳.基于主成分分析与神经网络的采矿方法优选[J].中南大学学报(自然科学版),2010,41(5):1967-1972. 被引量:93
  • 5李舜酩,李香莲.振动信号的现在分析技术与应用[M].北京:国防工业出版社,2008.
  • 6Hargrove L J,Guanglin Li,Englehart K B,et al.Principal components analysis preprocessing for im-proved classification accuracies in pattern-recognition-based myoelectric control[J].Biomedical Engineer-ing,2009,56(5):1407-1414.
  • 7Panagakis Y,Kotropoulos C,Arce G R.Non-nega-tive Multilinear Principal Component Analysis of Auditory Temporal Modulations for Music Genre Classification[J].Audio,Speech,and Language Processing,2010,18(3):576-588.
  • 8Qian Du,Wei Wei,May D,et al.Noise-adjusted principal component analysis for buried radioactive target detection and classification[J].Nuclear Sci-ence,2010,57(6):3760-3767.

二级参考文献33

  • 1王启明.非煤矿山安全生产形势、问题及对策[J].金属矿山,2005,34(10):1-6. 被引量:40
  • 2唐万梅.BP神经网络网络结构优化问题的研究[J].系统工程理论与实践,2005,25(10):95-100. 被引量:73
  • 3徐自祥,周德云,罗奕然.基于主成分的模糊神经网络[J].计算机工程与应用,2006,42(5):34-36. 被引量:19
  • 4Yick J, Mukherjee B, and Ghosal D. Wireless sensor network survey [J]. Computer Networks, 2008, 52(12): 2292- 2330.
  • 5Duarte M and Hu Y H. Vehicle classification in distributed sensor networks [J]. Journal of Parallel and Distributed Computing, 2004, 64(7): 826-838.
  • 6Mazarakis G P and Avaritsiotis J N. Vehicle classification in sensor networks using time-domain signal processing and neural networks [J]. Microprocessors and Microsystems, 2007, 31(6): 381-392.
  • 7Wu H W and Mendel J M. Classification of battlefield ground vehicles using acoustic features and fuzzy logic rule- based classifiers [J]. IEEE Transactions on Fuzzy Systems, 2007, 15(1): 56-72.
  • 8Malhotra B, Nikolaidis I, and Harms J. Distributed classification of acoustic ta,urgets in wireless audio-sensor networks [J]. Computer Networks, 2008, 52(13): 2582-2593.
  • 9Kuncheva L I, Bezdek J C, and Duin R P W. Decision templates for multiple classifier fusion: An experimental comparison [Jl. Pattern Recognition, 2001, 34(2): 299-314.
  • 10Pan Q, Wei J M, and Cao H B, et al.. Improved DS acoustic-seismic modality fusion for ground-moving target classification in wireless sensor networks. Pattern Recognition Letters, 2007, 28(16): 2419-2426.

共引文献105

同被引文献66

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部